‘Opmimizeo SysTeEms SoFTWARE

a GETTING STARTED WITH 0SS
CONGRATULATIONS

‘You have purchased what we believe is bq far the most
advanced software development package available for
the Atari B00 and Atari 400 personal computers.

This package will run on any Atari B00 or Atari 400 with
at least 32K bytes of RAM. Since no 0SS software uses
any routines in any cartridge, you may fully uvtilize all
the RAM in even a 48K byte Atari.

CAUTION: I¥f you have ANY cartrxdge plugged into your
Atari, you will not be able to utilize more than 40K
bytes of memory. This a hardware feature of the Atari
and can not be changed via software. If you need the
power of 48K bytes of RAM, REMOVE ALL CARTRIDGES.

There are. however, some circumstances under which you
may need a cartridge for your own devélopment work. 0SS
CP/A is completely compatiblé with all known Atari
cartridges.

HOW TO USE YOUR 0SS PACKAGE

1. Check the contents of your pécﬁége If you ordered Just
BASIC A+, there should be a BASIC A+ manual (an addendum to
the Atari Basic manval). If you ordered CP/A.'there should
be a CP/A manual and an EASMD (Editor/ASseMbler/Debuq)

manual.
2. There should be a license agreement. #fLL fHIS ouT NDw‘ANb
SEND IT TO US ! Aside from its obvious purpose, the agree-—

ment is YOUR ticket to ###SUPPORT###. Yes, we do answer
phone questions. Yes, we do rvespond to bugs. BUT ONLY for
those persons who send back their license !!!

3. Turn on your disk drive(s) and screen, leave the Atari coﬁputer

off. If you purchased CP/A, place the CP/A disk in drive 1.

If you purchased only BASIC A+, place an Atari DOS master disk
in drive 1. Boot up the system by turning on the computer’s
power. That’s all there is to it! Follow the manual direc-
tions for running the program you desire.

Note: special instructions for running BASIC A+ under Atarx

DOS are in the beginning of the BASIC A+ manual.

4. We strongly urge you to immediately make a backup copy of
i your 0SS diskette. You may do this using DUPDSK (see CP/A
manual). [Or use the Atari DUPLICATE DISK menu DDS command.]

S. Sit back and enjoy the powetr of a REAL computer system.

ABOUT ERRORS

Since this is a NEW product, there are bound to be a few bdgs
lurking in the cracks. We hope and believe that such bugs as
there might be will be mere annoyances. PLEASE report any ‘
bugs cr suspected bugs to 0SS as soon as possible. Unless. you

are absolutely desparate, PLEASE document the bug IN WRITING

and include an example program. We WILL accept diskettes which
demonstrate problems, particularly complex ones.

ERRATA

o “ 3

The following are known bugs. You may ﬁfpéﬁt user notes and/or
updates regarding fixes for these bugs in the near future. .
PLEASE send in your registration form, or we cannot contact you'!

BASIC At

1o

When LVAR is used with a file or device other than “"E:"
(i.e., the screen), the device is not closed properly
and further printing will take place to the device :
instead of to the screen. Several statements will halt
the erroneous process, but the simplest way is:

1. LVAR

LVAR “P:" : ?

The list of variables will be,sénf to ﬁhempr;nter aﬁd(the
‘?’ (abbreviation for PRINT) statement . will print-one
extra blank line before restoring normal screen operations.

2. PRINT USING)
When an arithmetic expression is to be printed via PRINT
USING, if the expression contains arithmetic involving
multiplication or division (including, therefor, all
transcendental functions), the system will hang and wiil
require SYSTEM RESETting. EXAMPLE:

-

PRINT USING " ###k## ", A * 3
will hang because of the multiply of A times 3. SOLUTION:
TEMP=A * 3 : PRINT USING " ###### ", TEMP

Simply don‘t use % or / in arguments to Print Using.

3. The manual
Figure PMG-1 from the page numbered 74 in your BASIC A+
manual is missing. The replacemant Table of Contents
is missing. A new page 74 and the Contents pagesare

attached to this ERRATA section.

. — — . — ———— ——— ——— — ——— ——— —— T — T o o ey

APPENDIX A Atari Basic Reserved Words

——————— ——— —— T S~ S—— ————— — i —— — —— — —— — T T} S S {1 <ot P S W o S

——————— — —— —— — — T S S P . S Vot W St W S PO T o Pt S o S e A Bt B B o B S S S S Bt S

APPENDIX D 3 Atarl 400/800 Memory Map

APPENDIX E Derived Functions

APPENDIX G Glossary

APPENDIX H User Programs

APPENDIX I * Memory Locations

————— — . —————— - T ———— " — T fo—— - —— T~ — T —t— — s S —

———— . S o — — o ——— — — — " S ——— {1 20 .t S92 —— — -

— o o o B o " " T oo —— T T T T " T o —— o

NOTICE

0SS veserves the right to make changes or improvements in the
product described in this manual at any time and without notice.

This manual is copyrighted and contains proprietary information.
All vights are reserved. This document may not, in whole ar part¢,
be-copied, photocopied, reproduced; translated. or reduced to any
electronic medium or machine—readable form without prior consent,
in writing, from 0SS.

0SS CP/A is Copyright (C) 1981, OPTIMIZED SYSTEMS SOFTWARE.

Optimized Systems Software
10379 Lansdale Avenue
Cupertino, CA 295014
Telephona: 408-446—-309%9

ATARI and ATARI 800 are registered trademarks of ATARI. INC.

OPTIMIZED SYSTEMS SOFTWARE

CP/A

for the ATARI 800 (R}

COPYRIGHT (C) 1981, 0SS

MARCH 1981

Version 1.0

TABLE OF CONTENTS

INEPOAUCTEON . o cvvs o irg w5 6@ 505 W10 566 5 08 55 555 00 2 1me 9 ot 10 0 100 0 o0 8t i 1
RUNBING CPLA 5 yoic o0 60055 9555 58500 nimnmnimsesmsosssnsssesss 1
Default Drive and File Specs0uruun... 2
CP/A Commandsttt it e, 3
Intrinsic Commands00uuvinnnnn.. 3

PROCOEE . o5 s 46505 558505 nn vmemem o s s s 4

UNProtect i, 3

ERASE ... i e e e e, 4

REName0ttt L

2 T L L D 4

LOAD: oo oimsuimsms o8s30 3050555 5o nn nowee oo S

U 56 650 2 6 6 5 5 8 5 i e bl o o o om0 im0 e 2 5 e 6 ¢ o S

CARtridge i, b

Reset e S

Extrinsic Commands0 i unmnunnn.. 6

Batch Processing 7
Executing EXECUTE files 7

Execute File Format 7

Execute Intrinsic Commands 8

REMavk «..:ivinivinsnsmswsmsnsossse 8

SCReen/NOSCYTEeN0ttt v e .. 8

END ... e e e e B8

Program Controlled Execute Stop 9

STARTUP. EXC s onwsmisoman oore o g @ e o s o6 a5 % s & 9

System Interface Guide it 10
SYSEQUL ABM o oimini i momi@smess o 9s @%@ iminssen 10

CP/A Memeory Location, 10

Execute Parametersttt ittt 10

Default Drive e e e e e e e 10
Extrinsic Parambers .icissmews s s as s @ s@smsssesese i1

RUNLBE :ciosnmswinins@sMisdsCasi@isamesesmsn AT I 12
EXLES .. i i imbmia i mad 8@ H 88 v 5 ememsosiosiosioss i2
APPENDIX A (0SS Extrinsic Commands} 13
COPY o ioswsniwswsmsms@s@isssi s s ye o sws®eninssis i3
INTIT cGsnimim iR itsmi s ah@i s snsvivsnininiminsn i3
DUPDSK, B BB S S50 e m e s s w1 mier s i ke e i3
APPENDIX B (FMS Pokes) ittt ittt iteennnnnennans 14
Number OFf File Buffers it enanenennn i4
Number Of DPrives ittt ettt sttt et 14
Fast Disk Write s .sinsmeimsnnmais spimss sesnsnsmsmss i4

RENaGmMe WOBSE < :nsoivsvimses@bs@sss o§ 5% 8% 6@ s sm 8memsem iS5

1.0 Introduction

CP/A is an abbreviation for Command Processor/Advanced. Its purpose
is to give its user an advanced type of command control over the
software systems in the Atari personal computer. CP/A replaces the
Atari menu driven DOS command processor with a less restrictive
command line processor. The CP/A user types command words and
parameters rather then invoking menu functions and responding to
questions. The CP/A command set is easy to learn since most of the
commands are the same as the functions desired, such as RENAME or
DIRECTORY. The CP/A command processor allows for user written
commands as well as the "batch" execution of commands from a file.
CP/A rveplaces ONLY the MENU command processor of ATARI DOS. The
Atari File Manager and Atari 0S5 are vused by CP/A without modifi-
cation. This means that disk volumes and associated disk files

are fully interchangable between Atari DOS and CP/A. The only
known incompatibility is that 0SS BASIC A+ SAVE files are not
compatable with ATARI BASIC SAVE files. ATARI BASIC ATASCII source
(LIST, ENTER) files will run without modification under 0SS

BASIC A+. The DOS.SYS file on the CP/A disk is the Atari FMS
(written by 0SS) and CP/A. CP/A disks do not have or need to

have DUP. SYS or MEM. SAV.

2.0 Running CP/A

The CP/A Command Processor is invoked in the same manner as the Atari
menu command processor. When the CP/A disk is booted. CP/A is
immediatly entered. If the computer has a cartridge that works with
the disk, such as BASIC, then the cartridge can be entered via the
CP/A CARtridge command. Re-entry of CP/A from the cartridge is done
in the same way as it is to Atari DOS. The BASIC command for this
is DOS. Some cartridges do not allow DOS ¢type exits and thus CP/A
cannot be used with these cartridges.

When CP/A is entered it will clear the screen and display:

0SS CP/A ATARI version 1.0
Copyright (c) 1981 0SS

Di:<cursor>

The Di: is the command prompt. It serves two purposes. First it
tells the user it is ready to accept a command. Secondly, it is a
reminder of the default disk drive. The default drive, in ¢this

case, being the familar file spec for drive 1.

3.0 Default Drive and File Specs:

Most CP/A commands and parameters deal with files of one sort or
another. The Atari Operating System requires files be specified with
a filespec of the form:

<device>: <optional-file—named

The device for disk files is of the form Dn: where n=1,2,3,4. For
example, D1: is the device name of the disk drive with the switch at
the rear of the drive set for drive one. Other types of devices are:
Printer=P:, Cassette=C:, Screen=8:, etc. The optional—-file—name is
used for named file accessing devices such as the disk units. To work
with the disk file TEST.ORG on disk drive number 1, the operating
system requires that the file spec Di:TEST.ORG be used. Having to
always specify the D1: can be tedious, especially if most of the user’s
file work is on a single drive.

The CP/A system is designed to prefix all filenames appearing in a
CP/A command line with the default drive — if a device has not been
explictly specified. In the case of D1:TEST.ORG, the user could enter
only TEST.DRG for a file name and allow CP/A to prefix it with the
default drive. Thus TEST.ORG becomes DI:TEST.ORG in the CP/A
system. If TEST.ORG happened to be on drive two and the default
drive was drive one, the user could enter D2:TEST.ORG. CP/A would

see that the user has explicitily specified a <{device> and would thus
not append the default drive device to that file name.

If the user needs to work a great deal with files on drive two, he can
change the default drive so as to avoid the now necessary D2: prefix
typing. Where the system prompts D1:<cursor>, the user can respond
with D2:<return> to change the defauvlt drive to the D2: device. The
next CP/A prompt line will show D2:<cursor> Now files accessed on
drive one will require the explict D1: prefix typing, while files on
drive will not require prefix €typing. Only devices of the form Dn:
(where n = 0-92) are allowed as default drives. CP/A does not check to
insure that the new default drive actually exists. The user‘’s first
indication of an invalid default drive will occur when CP/A attempts to
access a file on the invalid device (via user command). The error :
message "“INVALID DEVICE" will indicate the situation. The user should
then set the default device to a valid disk unit. The default device
change command is one of the many CP/A commands.

4.0 CP/A Commands

CP/A has three general classes or groups of commands. The classes are
intrinsic commands, extrinsic commands, and execute commands.

Intrinsic commands are executed by means of resident code in ¢the CP/A
monitor. Extrinsic commands are executed by means of loading and
running programs. The. execute subset of commands provide for the batch

~_execution of CP/A commands from a file.

4.1 Intrinsic Commands:

The intrinsic commands are executed via code in the CP/A monitor.
These commands do not require the loading of programs to perform ¢their
functions. The following is a summary of the CP/A intrinsic commands:

DIRECTORY — List Directory

PROTECT — Protect a file (from change or erase)
UNPROTECT - Unprotect a file

ERASE — Erase (delete) a file

RENAME - Renames a file

{ OAD — Load a binary file

SAVE — Save a binary file

RUN — Execute a program at some address

CARTRIDGE — Run Atari cartridge in the A cartridge slot

The default drive change command Dn: is also an intrinsic command. All
intrinsic commands may be abreviated with the first three characters.

As a matter of fact, CP/A only looks at the first three characters while
testing for an intrinsic command. Each of the commands will be covered
in detail later in this manval; however., to give you a feel of the
intrinsic commands let‘s look at the DIRECTORY command. While looking
at these examples, assume the D1: is the default device and has been
placed on the screen by CP/A.

D1:DIRECTORY list entire directory of disk on drive one

01 : DIRECT u " “ « n L1 “« “u

Di : D I RTY (1} [} " " 1] (1} a® A

01 . DIR " [{} [[} [} 1] “" L1} ({3

D1 : DIR *. * " " “" n n " " «

DI : DIR D1 : [1] “" [1] " n " " 11}

Di: DIR Di:3#. * 1] " "® “n " 1] ["

D1 DIR D2: list entire directory of disk on drive tuwo

DI ’ DIR D2: *- * " " n " " L{] " o
Di:DIR *. 0OBJ list all files with extension .0BJY on drive one

D1:DIR D2:3# ASM list all files with extension . ASM on drive tweo

4.1.1 PROTECT

The PRDtect command is uvsed to protect disk files from being modified
or ERAsed. Files that have an asterisk to the left of the file name in
the divectory listing are protected files.

PROtect file spec
4. 1.2 UNPROTECT , -

The specified files (PROtected or not) are unprotected. The
unprotected files can now be modified or ERAsed.

UNProtect filespec
4.1.3 ERASE

The specified files are removed from the disk and the disk sectors
occupied by the files become free to be used again by other files.

ERAse filespec
4. 1. 4 RENAME

Rename a file or files.

REName old-filespec new—filename

REName old—-filespec,new—filename
The old-filespec specifies the file(s) that are to be renamed to
new—Ffilename. Either blanks or a comma may be used to separate
the filenames. WARNING! Be careful using wild card renames. You
can get more than one file with the same name and never be able to
access the second same—named file. (See Appendix B)

4.1. 5 SAVE
The SAVE command is used to write (copy) a section of RAM to a disk
file. The area of RAM to be written is given as the two hexidecimal
parameters start address (sa) and end address (ea).

SAVe filespec sa ea

Example:

SAV TEST. OBJ 4000 4FFF

The sa and ea paramefers are separated by blanks or a comma. The

ea must be greater than or egqual to sa.

CP/A will write a six byte header to the file before writing the data.
This header consists of the binary file indicator, the sa, and the ea.

Binary File Indicator (2 Bytes) $FFFF
sa (2 Bytes) least significant byte first ($0040)
ea {2 Bytes) least singificant byte first ($FF4F)
data (ea — sa) + 1 bytes

The saved file may be later loaded with ¢the LOAD command.

4,1. 6 LOAD COMMAND

The Load command is used to load binary files into RAM. The

specified file is checked for the Binary File Indicator ($FFFF

as the first two file bytes). If the indicator is present the

next four bytes are assumed as the sa and ea of the data. CP/A

" will then copy the next ea-sa + 1 bytes of data from the file to

RAM starting at ea. CP/A will also place sa in the CP/A RUNLOC

cell. If CP/A does not recieve an end-of-file after loading the data
it will assume another code segment is present. Each following code
sagment is like the first except that the $FFFF header is not present.
CP/A will only place the sa from the first segment in RUNLDC.

LOAD filespec

CP/A also supports the Atari load and go scheme. If the load file
has the proper INIT and RUN vectors:, CP/A will perform the INIT
and RUN functions (see Atari DOS 2.0 manual for details).

The 0SS assembler (EASMD. COM3 creates object files that are load-
able as LOAD files.

4. 1.7 RUN COMMAND
The Run command causes CP/A to call (JSR) a routine in RAM.
" RUN optional-hex—address

If the optional hex adress is specified then CP/A will place

the given hex adress in the CP/A RUNLOC and then call the routine
via the address in RUNLOC. If the hex address is not specified
then CP/A will call the address that is currently in RUNLOC.

The address in RUNLOC may have been set by a previous LOAD ar

RUN command or via the execution of an extrinsic command.

4.1.8 CARTRIDGE

The parameterless CARtridge command causes CP/A to transfer control
to the CARTRIDGE in the A cartridge slot. There are two ways CP/A
will call a cartridge, either with a warm start or a with a cold
start. The cartridge cold start tells the cartridge ¢to reinitialize
its memory and start cold. The warm start tells the cartridge to
retain its memory as it was upon exit (via DOS command or RESET).
The first CP/A cartridge call will always be a cold start. Sub-—
sequent CP/A calls will be warm starts unless CP/A has executed a
memory changing command. Memory changing commands are LOAD and
extrensic commands.

4.1.8.1 RESET

I# a cartridge has control and the RESET key is pressed, CP/A will
be entered. If it is desired to re—enter the cartridge, simply
enter the CAR command.

4.2 Extrinsic Commands:

The extrinsic commands are programs that are run by CP/A. Any program
file of the load file format and containing the .COM extension may be
vsed as a CP/A extrinsic command. The CP/A COPY command is one such
extrinsic command. If you DIR the CP/A diskette, you will see a file
named COPY. COM . The program in the COPY.COM file is what is executed
when the COPY command is entered. Assuming that Di: is the default
‘device, the COPY command would look like:

D1:COPY <from—file-name> <to—file—named
or
Di:COPY TEST. OBJ D2: TEST. OBJ
to copy TEST.OBJ fram drive one to drive two.

Whenever any command is given to CP/A it first compares the command
entered (first three tharacters only) to its intrinsic command list.
If the command is not in the intrinsic list, it is assumed to be
extrinsic. CP/A will process the extrinsic command by:

1) Prefix the command with the default device (if a device
is not specified).

2) Attach the .COM extension to the command.

3) Open the generated file spec for input.

4) Test file for proper Load file format (see 4.1. 4).

S) Load and execute the pragram.

The COPY command illustrated will execute only if the f£ile COPY. COM

exists on drive one and is of the Load file format. If any element of
the procedure fails various error messages will result. Step 1 aof
the procedure implies that a device may be specified. If the default

device is drive two and the COPY.COM program is on drive one, our
example COPY would look like:

\

D2:D1:COPY D1i: TEST. OBJ TEST. OBJ

which again copies TEST. OBJ from device one to device two. Never
explictly specify the .COM extension as part of the command. The
command COPY.COM will result in a file spec of D1:COPY. COM. COM,

which is invalid. If the file is not of the proper format: the errar
message ADR RANGE ERROR will most likely appear.

The extrinsic command class contains an infinite number of commands.
Some extrinsic commands (such as COPY) are supplied by 0SS. Most
extrinsic commands are user written. If you are intrested in writing
your own extrinsic commands, see Appendix B.

4.3 Batch Processing:

The CP/A execute feature allows the user to execute one or many CP/A
commands with a single command. Let’s suppose that you wrote a set of
BASIC programs that must be run in sequence. You could issue the CP/A
extrinsic BASIC command (execute BASIC.COM), then from BASIC run each
program one at a time. If the running time of the BASIC programs was
very long you could sit at the key board for hours Just to type RUN
program—name every once in awhile. CP/A allows yau to create and
execute an EXECUTE #file which contains one or many CP/A commands.

You would then enter one command that would free you from the keyboard
for more important (or fun) things.

4.3.1 Executing EXECUTE files:

Any text file with the filename extension .EXC can be used as a CP/A
execute file. The execution of the file is invoked much like the
extrinsic commands, except the command is preceeded with an AT “e©
symbol. To execute the EXECUTE file DEMO.EXC on the Di: default devicea

D1:@DEMD

CP/A will build the file spec D1:DEMO. EXC and read that file line by
line executing the CP/A commands just as if they were being entered
from the keyboard.

Humans are not quite perfect in the eyes of computers and sometimes
make mistakes. CP/A commands specified in error will generate error
messages. If CP/A discovers an error while executing an EXECUTE +ile,
it will print the error message as vusual and STOP executing the EXECUTE
file.

Execution of an exexute file will also stop after the CARTRIDGE command
is executed.

4.3 2 Execute File Format

An execute file is simply a text file. Each line of the text file
will become a CP/A command when executed. The three basic rules
of text file LINES are that:

1) they must contain valid CP/A commands,

2) they must be less than &0 characters in length

3) they must end in a carriage return (ATASCII $9B}.
CP/A allows the commands in an execute file to be preceeded by numbers
and blanks. This feature allows the command lines to be numbered
for readability and thus document their purposes.
The execute file line:

LOAD OBJ. TEST <return2>
and the line:

10C LOAD OBJ. TEST <return>
are the same to CP/A . CP/A scans the line for the first non—-
numericl, non—-blank character before starting to scan the command
word. The EDITOR of the 0SS EASMD program can be used to create
and modify execute files.

4. 3.3 Execute Intrinsic Commands

CP/A has four special intrinsic commands designed for use with

execute files. These commands are:
REMARK Remark or comment (does nothing}
SCREEN Allows execute commands to echo to ¢the
screen. This is the default mode.
NOSCREEN Turn off Echo of execute file command lines
- N to the screen. :
END ~ Stop executing the execute file and return

CP/A to keyboard entry mode.
4.3.3.1 REMARK

The REMARK command provides a means of commeﬁting and documenting
an execute file. CP/A will ignore all characters on the REMARK

command line and proceed to the next command file line. The command
file:

100 REM BACKUP DAILY TRANSACTION FILE

i10 BASIC TFBACKUP. BAS

120 REM PRINT TRANSACTION REPORTS

130 BASIC TREPORTS. BAS

140 END

uses D55 BASIC A+ to work with some transaction BASIC programs. The
REMARK statements explain the process. LINE 110 will load and execute
the 0SS BASIC A+ (BASIC.COM on default drive}) which will in turn

run the TFBACKUP.BAS BASIC A+ program (SAVED on default drive).

4. 3. 3. 2 SCREEN/NOSCREEN

CP/A normally echos the command lines ¢o the screen so that it
appears as if they were typed in as keyboard commands. The
NOSCREEN command can be used to prevent the echo process. After
NOSCREEN has been executed, no further EXECUTE file command will
appear on the screen until:

1) the SCREEN command is executed or

2) the EXECUTE file stops for some reason.

4.3.3.3 END

The END command provides a documentable END to the execution of
of an execute file. It may also be used to stop the file’s execution
before the actual end-of-file.

4.3. 4 PROGRAM CONTROLLED EXECUTE FILE 8TOP

It is sometimes desirable for a program in a chain of executing
programs to stop the execute process. The usual reason for

this is that the pragram has detected an error severe enough to in-
validate the processes performed by the following program(s).

The continued execution of the execute files is provided for

by @ single byte flag within CP/A. I+ a program sets this

byte to zero, then wupon returning to CP/A via DOS or CP

(BASIC statements) the execute file execution will immediately stop.
The execute flag is located 11 bytes from the start of CP/A.

The address of CP/A is pointed to by memory location 10 ($DA).

The following BASIC A+ program segment will turn off the execute
file and return to CP/A.

1000 CPADR = DPEEK(10)
1010 EXCFLG = CPADR + 11
1020 POKE EXCFLG,O
1030 DOS

4.3.5 STARTUP. EXC

The execute filename STARTUP.EXC has special meaning in the CP/A
system. When the system is first booted (power up), CP/A will
search the directory of the booted disk volume for a file named
STARTUP.EXC. I+ STARTUP.EXC is on the booted volume, CP/A

will execute that file before requesting keyboard commands.

5.0 SYSTEM INTERFACE GUIDE

The writer of assembly language code will most likely need to
interface with the Atari Dperating System (0S). If the
assembly code is to become an extrensic command, there may

be a need to interface to CP/A . The Atari 0S5 manual provides
a proliferation of information about the Atari Operating System
which will not be covered here.

5.1 SYSEQU. ASM

Every CP/A master disk contains an assembler souvce file, SYSEGU. ASM,
that has various commonly used Atari 0S and CP/A system equates. This
file may be included in an assembly languae program via the 0SS

EASMD include function (. INCLUDE #D1i:SYSEQU. ASM)

5.2 CP/A MEMORY LOCATION

CP/A is designed to be placed just after the Atari File Manager.
Since the acatuval location of CP/A may vary with different versions
of a file manager, a fixed location has been assigned to point to
CP/A. The lacation (CPALOC=%0A) is the same one Atari uses to point
to DUP. All Atari programs that use a DOS exit vector through %0A.

5.3 EXECUTE PARAMETERS

The CP/A execute flag is located CPEXFL ($0B) from the start of CP/A.
The CPALOC may be used as an indirect pointer to access the execute

flag.

LDY #CPEXFL i GET DISPL TO FLAG
LDA (CPALDC), Y i LODAD FLAG
The Execute Flag has four bits that control the execute process:

EXCYES $80 If one, an execute is in progress

EXCSCR $40 I¥ one, do not echo execute input to screen

EXCNEW %10 If one, a new execute is starting. Tells
CP/A to start with first line of. the
file

EXCSUP $20 If one, a cold start execute is starvting.

Used ¢to avoid file—-not—found error
it STARTUP.EXC is not on boot disk.

CP/A performs the execute function by opening the file, POINTing to
the next line, reading the next line, NOTE the new next line and
closing the file. To perform these functions, CP/A must save the
execute file name and the three byte NOTE values. The filename

is saved at CPEXFN ($0C) into CP/A. The three NDOTE volues are saved
at CPEXNP(%1C) into CP/A. (CPEXNP+0=ICAUXS; CPEXNP+1=ICAUX4;
CPEXNP+2=ICAUX3). By changing the various execute control para—
meters, a programmer can cause recursion and/or changing of ex—
ecute files.

5.4 DEFAULT DRIVE
The CP/A default drive file spec is located at CPDFLV (%$07) into

CP/A. The Default Drive here is ATASCII Dn: where ‘n’ is the ATASCII
default drive number.

5.5 EXTRINSIC PARAMETERS

The extrinsic commands may be called with parameters typed on the
command line. The 0SS command

D1:COPY FROMFILE D2:TOFILE

is an example of this. The entire parameter line is saved in

the CP/A input buffer located at CPCMDB (%40) bytes into CP/A

and is available to the user. Since most command parameters are
file names, CP/A provides a means of extracting these parameters

as filenames. The routine that performs this service begins at
CPGNFN ($03) bytes into CP/A . The routine will get the next
parameter and move it to the filename buffer at CPFNAM ($21) bytes
in CP/A. If the parameter does not contain a device prefix., then
CP/A will prefix the parameter with the default drive prefix.

The first time COPY calls CPGNFN the file spec “D1:FROMFILE" is
placed at CPFNAM. The second time COPY calls CPGNFN the file spec
“D2: TOFILE" is placed in CPFNAM. If CPGNFN were to be called again
then the default filespec would be set into CPFNAM at each call.

To detect the end of parameter condition, the user may check the
CPBUFP (%$0A into CP/A) cell. If CPBUFP does not change after a
CPGNFN call then there are no more parameters. The filename buffer
is always padded to 16 bytes with ATASCII EOL ($9B) characters.

The following example sets up a vector for calling the get—filename
routine.

CLC

LDA CPALOC i ADD CPGNFN

ADC #CPGNFN i TO CPALOC VALUE

STA GETFN+1 i AND PLACE IN

LDA CPALOC+1 i ADDRESS FIELD

ADC #0 i OF JuMmp

STA GETFN+2 i INSTRUCTION
GETFN JMP 0

The following routine then gets the next file name to CPFNAM.

LDY #CPBUFP i SAVE CPBUFP

LDA (CPALODC)., Y i VALUE

PHA ;

JSR GETFN i GET NEXT FILE PARM

LDY #CPBUFP

PLA . i TEST FOR NO NEXT

cMP (CPALDOC), Y i PARM

BEG NONEXT i BR IF NO NEXTPARM

LDY #CPFNAM i ELSE GET FILE

LDA (CPALOC), Y i NAME FROM BUFFER
-11~

5.6 RUNLOC

The CP/A RUNLOC ($3D into CP/A) is used as the CP/A vector to
routines with the RUN, LOAD and extrinsic commands. An application
that allows exits to CP/A can change RUNLOC to provide a warmstart
re—entry to the application (if the user enters RUN with no para-—-
lmeters). If the application is not reusable and wishes to forbid
re—entry, the high order byte of RUNLOC ($3E into CP/A} should be
set to zero. '

LDY #RUNLOC+1 i FORBID RE-ENTRY
LDA #0 i TO ME
STA (CPALOC)., Y

5.7 EXITS

CP/A calls all programs (except cartridges) via the 4502 JSR
instruction. A called CP/A program may return back to CP/A

via the RTS instruction or via a JMP (CPALOC). I the
JMP (CPALOC) is used, CP/A will close IOCB zero and re—open
it to the E: device (which clears the screen). Either <¢he
JMP (CPALOC) or the RTS return will cause CP/A close IOCBs
one through saven.

APPENDIX A ' ‘
0S5 EXTRINSIC COMMANDS

A-1. corPy
copy from—File-spec to-file-spec

The copy command will copy one file, the from—file—spec:; to the
to—-file—spec. COPY does NOT allow a change of diskettes while
copying: both source and destination must be mounted when the
COPY command pauses after loading.

A-2. INIT
INIT (no parameters)

The INIT command is used to:
1) FORMAT A DISK (DR}
2) FORMAT A DISK AND WRITE DOS. SYS (DR)
3) WRITE DOS. SYS

INIT is menu driven and will give you the oportunity to change
disks before executing. DOS. 8YS is the CP/A boot loader and is
required to make the CP/A boot from the disk.

A-3. DUPDSK

DUPDSK (no parameters)
DUPDSK is used to duplicate an entire disk. It can be used with a
single drive. It will format the destination disk for you if

you choose to do so. When you are finished with DUPDSK, you
must insert a system disk (a disk with DOS. SYS) because DUPDSK
will (purposefully) re-boot the system.

APPENDIX B
FMS POKES

There are several ‘pokes’ that can be done to the Atari FMS that
comes with CP/A. These pokes are used to change certain FMS
parameters. The changes can be made permanent by using INIT

to write (re—write) DOS. 8YS after the poke is done.

B. 1 NUMBER OF FILE BUFFERS

The FMS allocates space for file buffers. One file buffer is
required for each open disk file. The number of file buffers
allocated is the number of files that can be open at the same

time. The CP/A system is shipped with three (3) file buffers
allocated. Three is the recommended minimum. The nul)l. can

be changed by poking a new value at $709 (decimal 1801). The
maximum vusable valuve is 7 (any value greater than 7 wastes space).
The changed value does not go into effect until the system is booted.
This means that you MUST rewrite (or write) DOS.5YS on the disk

and then reboot the disk.

B. 2 NUMBER OF DRIVES

The FMS drive byte is used to tell FMS how many drives you have
on your system. The FMS is shipped with the drive byte set for
two drives (Di: and D2:). Each drive allocated via this value
consumes an additional 128 bytes of RAM for a drive buffer. If
you have more or less than 2 drives, you will probably want to change
this value. This value, like the value for the number of file
buffers, does not go into effect until the system is booted.
The drive byte is located at location %704 (decimal 1802). The
appropriate values are:

1 drive = %01 (decimal 1)

2 drives= $03 (decimal 3)

3 drives= %07 (decimal 7}

4 drives= $0F (decimal 15}

B. 3 FAST DISK WRITE

The Atari disk can be commanded to write sectors with verify or
without wverify. The write WITH verify causes the drive to read each
sector immediately after writing it; this process assures that data
on the disk 1is valid but causes write operations to run about half
as fast as they could run if the write was done without verify.
Depending upon your patience: the importance of your data, and your
objective view of the reliability of your drives and disks, you can
choose either write—with—verify (slow) or write—without—verify (fast).
The FMS location to change is $77% (1913 decimal). The write—with-—
verify value is $57 (87 decimal). The write—without-verify (default,
faster write) is $50 (BO decimal).

B. 4 RENAME WOES

If you happen to rename several files (for example, with the use of

a wild card vename) in such a way that you end up with two files of

the same name, you need to remember this section. The problem: after
ending up with two files of the same name, all further accesses to

that filename will access only the first file that appears in the
directory. Even a wildcard rename will not work: both files are again
renamed to the same name.

The solution: You may patch FMS to alter the RENAME code. The patch
causes RENAME to change oniy the first file in the directory that
matches the given filespec, not all matching filenames. To make the
patch, POKE a zevo (200) to location $C2E (decimal 3118). To restore
RENAME to normal functioning, poke $BB (decimal 184) to the same
location.

CAUTION: because this patch affects ALL renames, and will not now
allow multiple RENAMEs, etc., it is probably not advisable to make
the patch permanent.

NOTICE

OPTIMIZED SYSTEMS SOFTWARE reserves the right to make changes or

improvements in the product decribed in this manual at any time
and without notice.

This manual is copyrighted and contains proprietary information.
ALl rights are reserved. This document may not, in whole or part,
be copied, photocopied, reproduced, ¢translated, or reduced to any
electronic medium or machine—-readable form without prior consent,
in writing, from OPTIMIZED SYSTEMS SOFTWARE.

0SS EASMD is Copyright (c) 1981, Optimized Systems Software

Optimized Systems Software
10379 Lansdale Ave.
Cuperftino CA. 23014

(408) 446-309%9

Atari and Atari 800 are registered trademarks of Atari, INC.

OPTIMIZED SYSTEMS SOFTWARE

055 EASMD

for the Atari 800 and Atari 400

March 1981
Version 1.0

Copyright (c) 1981, Optimized Systems Software

TABLE OF CONTENTS

START UP
For Start Up .
HWarm Start .
Back—up Copy .

SYNTAX CONVENTIONS

EDITOR
Text Format
Tables . .
Command Format .
Line Prompting

Editor Command Syntax and Descr1ptxon.

DEBUG
Command Format .
Line Prompting

Debug Command Sgntax and Descr:ptxon ;

Break Points .

ASSEMBLER :
Assembler Input
Instruction Format .
Directives .
Expressions

Strings

Labels .

Comments .

ERROR DESCRIPTION
NOTES
MEMORY MAP .

SYNTAX SUMMARY
Ediftor .
Debug .
Assembler Dxrectxves .

ERROR SUMMARY
EASMD Errors
DOS Errors .

TR

gI9I9LY vaAaLOWWL W

-
n

i3
i3
14
i6
16
17
17

ig
20

22
23
23
24
24
25

25
26

START UP

Editor/Assembler/Debug (EASMD)

FOR START UP:

Put the 08S diskette in disk drive 1 and turn aon the power.

This will load the Operating System and execute CP/A. Now enter:
EASMD (return)

This will load the Editor/Assembler/Debug and start executing it.
See the CP/A manual for other capabilities.

WARMSTART:

The user can return to CP/A using the EASMD command CP or by using
the SYSTEM RESET key. He can then re—enfer EASMD by vusing the CP/A
command RUN (if he has not loaded another program). This does a
warm start which preserves text lines already in memory.

BACK-UR COPY:

On a dual drive system, simply use COPY or DUPDSK. On a single
drive system:; one can use DUPDSK or one can make a back—up copy
of EASMD on another diskette via the CP/A SAVE command.

System RAM size 32k 40k 48k

Start address 5700 7700 2700

End address 7C0C 9C00 BCOO

File Name: EASMD. COM (or any .COM name of your choice)
NOTE: For a full explanation of CP/A commands see the CP/A

reference manual.

SYNTAX CONVENTIONS

The following conventions are used in the discussion of
syntax in €his manuval.

1)

2)

3)

4)

Capital letters denote commands: etc. which must

"be typed by the user exactly as shown.

(eg. LIST, DEL)

Lower case letters denote types of items which
may be used. The various €ypes are shown in the
next section. {eg. 1lno}

Items in square brackets are optional (eq. [,1lnol)
Multiple items in braces indicate that any one may

be used. (eg. {AY)
{@)

TYPES OF ITEMS:

The following types of items are used in describing syntax
commands.

1no line number (in range O to &5535).

string A string of ASCII characters.

adr A memory address (given in hex).

data A list.of hexadecimal values separated by
commas.
Example: AB, 12, FE

incr Increment a decimal value.

filespec See Atari DOS manual or CP/A reference

manual for full format.
Generally you may use

DEnl: xxxxxxXxX. yyy for disk files
P: for the printer
etc.

Note that in EASMD filespecs must
ALWAYS be prefaced with a pound sign (#).

EDITOR

The Editor allows the user to enter and edit lines of ASCII
text.

TEXT FORMAT

LLines of ASCII text received by the Editor are stored in
memory. A line consists of a line number (0O to 65535),

text information and a carriage return. The text information
that is between the line number and the carriage return is
stored exactly as it is received. Thus any combination of
ASCII data is valid text.

Example: 1000LITTLE GREEN APPLES
This is valid text as Fa; as the Editor is concerned.
NOTE: The Assembler: however, expects a blank after

the line number and will not look at the first
character after the line number. Thus

1000ABC L DA #0
is seen as
1000 BC LDA #0
Example: 100 PRINT X<KSIN(X)

The Editor can be used to create and edit Basic
programs.

TABLES

The text area and other user tables are built starting at an
address in low memory and growing towards high memory. The user
can change this address using the LOMEM command.

The user can also change the highest address the Editor will use
for user text by using the change memory command in the Debug
monitor to change UHIMEM. (See memory map for UHIMEM address).

COMMAND FORMAT

The stored lines of text are manipulated by Editor commands. A
command is distinguished from text by the absence of a line number.
Any line of data received by the program that does not begin
with an ASCII numeric is considered to be a command. The
Editor will examine the characters to determine what function
to perform. If these characters do not form a valid command.
or if the command syntax is invalid, the Editor will respond
with:
WHAT?

LINE PROMPTING

The Editor will prompt the user each time a command has finished
executing by printing:

EDIT
The cursor will appear on the following line. Since some

commands take awhile to execute, the prompt serves to tell
the user when more input is allowed.

EDITOR COMMAND SYNTAX AND DECRIPTION

NEW

DEL
DEL

FIND
FIND
FIND
FIND

LIST
LIST
LIST
LIST

NEW will delete all user text from the text érea in
memory.

1no
lnol, Ino2

DEL deletes the specified line number (lno) or all the
lines in the range lnol through 1lno2.

/string/

/string/., A
/string/1lnoll, 1no21]
/string/lnolil, Ino2l, A

The FIND command will search the specified lines (all

“or 1lnoil through 1lno2) for the "string" between the

specified delimiters. The delimiters may be any
character other than blank. The second delimiter must
be the same as the first. .

If “A" is specified, any line that contains a matching
string will be printed at the user terminal. I+ "A" ig
not specified, then only the first line that contains a
matching string will be printed.

#filespec
lnoil, Ino21
#filespec, 1lnoil, 1no21

The LIST command will cause all lines in the specified
range to be listed to the screen (or to a devxcelfxle
when “"#filespec" is specified).

If “"1Inol" is less than the line number of the first
text line, then listing will start with the first line.
If "1lno2" is greater than the line number of the last
text line, then listing will end with the last line.
Hitting the break key will stop the LIST.

Example: 3 LIST #D1:EX. TST

Will list all lines to a file EX. TST
on drive 1.

Example: LIST #P:

Will list to the printer.

PRINT
PRINT
PRINT
PRINT

ENTER

NUM
NUM
NUM

REN
REN
REN

REP
REP

REP
REP

#filespec
lnoil, 1no21
fifilespec, lnoil, 1no21

Print is exactly the same as LIST except that the line

numbers are not PRINTed, and that the EDIT ready prompt
will not be printed after the last line until the user

hits the RETURN key.

#filespecl, Ml

The ENTER command causes previously LISTed text from the
device or file specified by #filespec to be re—entered.
The optional "M" parameter specifies that the new text
is to be merged with the text currently in memory. If
“M" is not present, then the text area will be cleared
before starting the ENTER.

Example: ENTER #D2: XXX

Will re—enter the text that was listed to
the file XXX on drive 2. :

sino, incry
incr

The number command is used to automatically attach line

numbers to user lines. The user is prompted with the
next line number. A blank avtomatically follows the

line number. The "slno" parameter specifies the starting
line number. The "incr" parameter is the line number
increment.

The default “Yincr" is 10. The default “slno" is the last
text line number plus "incr".

Hitting RETURN after the line number prompt terminates
NUMber mode.

slno, incr
incre

"The REN command renumbers the text. The first line

number will be “slno“. The line numbers will increment by
incr. The default "slno" and “incr" is 10.

/old string/new string/
/old string/new string/, {A)
{G@)
/old string/new string/lnoll, lno2]
/old string/new string/lnoll, lon23, {A)
{Q)

The REP command will search the specified lines (all

or lnol through 1lno2) for the "old string" (between
specified delimiters). The delimiters follow the same

-—b—

Trules as the delimiters for FIND.

The "A" option causes all occurrence of "old string" to
be replaced with "new string" (between the same specified
delimiters).

If the "Q" option is specified then when each match is
found, the line is listed and the user is allowed to
specify change (Y followed by RETURN) or don‘t change
(RETURN alone}) this occurrence. Hitting BREAK will
terminate the REPlace and return to the Editor.

If neither "A" or “Q" is specified, only the first occur-—
rvrence of "old string" will be replaced with "new string”.

NOTE: Each time a replace is done the changed line is
listed.

SI1ZE .
The SIZE command prints the users low memory address, the
highest used memory address, and the highest usable
memory address (UHIMEM).

LOMEM adr

L OMEM command changes the address at which user tables
start.

NOTE: The LOMEM command will destroy any user statements
in memary.

NOTE: This command can be used to reserve a space
between the default low memory and the new low
memory address. This space can then be used
for the object output from the assembler.

cpP
DOS
CP or DOS returns to the 0SS Control Program (CP/A)}
BYE
BYE returns to the Atari Memo Pad.
ASM
ASM [#filespecl], L[#filespec2l, [#filespec3]

The ASM command assembles source code and produces object code
and a listing.

By default:
1) The source "“device" is the user text area.
2) The listing “device" is the screen.
3) The obgject “device" is memory.

BUG

These defaults can be overridden as follows:

filespecl - source code file or device
filespec2 — listing file or device
filespec3 — object file or device

A “filespec" can be omitted by substituting a comma.
in which case the default holds for that parameter.

Example:

Example:

Example:

NOTE:

See the
about when aobject is actually written to the
specified file (or memorvry).

ASM #D1:S0OURCE, #D2: LIST, #D1: OBJ

In this example, the source will come
from D1:SDURCE, ¢the listing will be
written to D2:LIST, and the obgject will
be written to D1i:0BJ.

ASM .+ #D3: OBJ

In this example the source will come from
user text area in memory, the listing will
go to the screen, and the object code will
be written to the file OBJ on disk drive 3.
ASM $P:

In this example the listing will go to
the printer.

.0OPTion directive for full information

The BUG command causes the debug monitor to be entered.

DEBUG

The Debug Monitor allows the user to perform controlled execution
of machine code, examine memory, alter memory, move memory blocks
and verify the equality of memory hlocks. :

COMMAND FORMAT

The Debug Monitor assumes that any line of data that it receives
is a command. If the data does not form a valid command, the
Debug Monitor responds with:

WHAT?

LINE PROMPTING

The Debug Monitor will signal completion of a command by printing:
DEBUG
The cursor will appear on the following line.

NOTE: If the user is getting a syntax error indication (WHAT?) on
what he thinks is a valid command, he should check the
prompt message (DEBUG/EDIT) to verify that he is in the
correct mode.

DEBUG COMMAND SYNTAX AND DESCRIPTION

G fadrl

The ¢ Command (Go) transfers control to the specified
address via a JMP command. If “adr" is not specified,
then the current monitor program counter is used.

T fadrl

The T Command (Trace) causes instructions to be
executed starting at "adr". If “adr" is not
specified then the current monitor program

\ counter is used. As each instruction is
executed, its address, mnemonic and operand
will be displayed along with the current values
in the 6502 A, X,Y.P(status}), & S(stack) registers.

Hitting the break key (BREAK) will terminate trace.
S Cadr]

The S Command (Step) is exactly like the T command
except that only one instruction is executed.

D adril,adr2l

The D command (Display Memory) will cause memory from
“"adrl" to "adr2" to be displayed in hexadecimal. If
"adr2" is omitted, then B bytes are displayed

(ie, adr2 = adrl + 8).

If "adri" is omitted, then this display sterts where
the last display left off (ie, at the last "adr2" + 1),

Hitting the break key (BREAK) will terminate Display.
C Cadril<data

The C command (Change Memory) is used to alter

memory starting at "“adr". If “adr" is not

specified, then Change uses the mosft recent “adri"

if D was the last command, or the next unchanged address
if C was the last command.

The “data" is a list of 1 byte hex values

separated by commas.

Example: C S000<3,CD, iF

Will change locations 5000 thru 5S004
to 3.CD, 1F, 2,3 respectively.

Multiple commas may be used to skip over memory addresses
without changing the contents to reach the desired address.

Example: _ C 5000<3,, 1F
will change hex location 5000 to 3,

location S002 to 1F, and location
5001 will be unchanged.

L

L adrifl,adr21l
The L command (list) will cause the instructions
located at “adrl" to be disassembled and displayed
with the address, instruction mnemonic and operand.
I£ “adr2" is not specified: then twenty instructions
will be listed. If the address field ("adri") is not
specified, then this list will start where the last
one left off.
Hitting the break key (BREAK) will stop the listing.

M tadr<fsadr, feadr

The M command (Move) movesAdata from the address "fsadr"
through the address “feadr" to the address specified

with “tadr".
tadr - "move to" address
fsadr - “move from" start address
feadr - “maove from" end address

Vv adri<adr2, adr3

The V Command (Verify) compares the memory starting at
"adri" with the memory located at "adr2" through "adr3".
I+ any of the compared bytes mismatch, then address and
data bytes will be displayed.

DR

The DR command (Display Registers) will cause the A, X, Y,
status (P) and stack (S) registers to be displayed in
hexidecimal.

CR {data

The CR Command (Change Registers) is used to change the
registers. Registers are assumed to be in the order:
A, X, Y, status (P) stack (S), so that the first byte of
data goes into A register the second into X, etc.

As in the C command, "data" is a list of hexadecimal values
separated by commas and field may be skipped by use of
multiple commas. -

Example: CR<SFF, .3

will set A=FF and Y=3. It will leave
X,P and S unchanged.

The X command (exit) will cause control to return to
the Editor.

A

The A command (Assemble) will cause the system to enter into the
Debug Assembler mode. No prompt other than the cursor is used
in this mode.

The Debug Assembler is a line—at-a-time assembler that uses
6502 mnemonics and operand format. Relative branch operands

are specified as the actual "branch to" address; the Assembler
creates the relative address. ’

The format of each line is:
A(adr](assembler code

The Debug Assembler keeps track of the location counter so that
it "adr" is omitted, the next consecutive address is used.

Entering only a carriage return will return the user to the
Debug monitor. ;

Example: While in Debug mode the user enters:

A
5000< LDA#3
< BNE %5010

The "A" puts the user into the Debug

Assembler. The next two statements
will cause memory to cantain the
following:

5000 A% 03
5002 DO OC

NOTE: The blank after the “<" ig required.
NOTE: - The Debug Assembler accepts both decimal and hex

numbers as operands: therefore, hex operands must
be preceeded by “&".

BREAK POINTS

BRK instructions must be individually set and removed by the user.

Step and Trace intercept the BRK instruction and simulate its
execution.

‘ASSEMBLER

The Assembler gets control when ASM is typed into the Editor.
For the ASM command syntax, see the Editor section.

Hitting the break key (BREAK) will stop the assembly.

ASSEMBLER INPUT

Input to the Assembler is lines of ASCII data as entered into
the Editor. Source lines are of the form:

(line number) (blank}? (source statement)
where source statement is of the form:

flabel] £6502 instructiond)
{ directive)

A source statement hag cansist of a label only, or it may be
blank.

In general the format is as specified in the MOS Technology
6502 Programming Manual. We recommend that the user unfamiliar
with 6502 assembly language programming should purchase:

“Programming the &502" by Rodney Zaks
ar
“6502 Assembly Language Programming®” by Lance Leventhal.

INSTRUCTION FORMAT:

Al Instruction mnemonics as described in the MOS
Technology 6502 Programming Manual.

B) Immediate operands begin with #

C) “(Operand, X)*" and "(Operand),Y" for indirect
addressing.

D) “Operand, X* and "Operand, Y" for indexed
addressing.

E) Zero page and forward equates recognized and
evaluated within the limits of a two pass
assembler.

F) “x" vrefers to the location counter.
G) Comment lines begin with "“; "
H) Hex constants begin with “"s$*

-13-

I) The "A" operand is reserved for accumulator
addressing.

DIRECTIVES

.TITLE ‘“stvring"

The .TITLE directive allows the user to specify
a title to be used in conjunction with .PAGE

. PAGE [Ystring"]

The .PAGE directive allows the user to specify
a page heading. It issues an ASCII form feed
(hex OC) and prints the most recent title

and page headings. '

NOTE: The most recent title and page headings
are also printed every time 52 lines of source
code have been assembled.

. BYTE expression and/or “string" list
The .BYTE directive sets a one byte value for
each expression and the ASCII equivalent of

each character of each string into the object
code.

Example: .BYTE 3,"ABC",7,"X"
produces:
03 41 42 43 07 S8
. WORD expresion list
The .WORD directive sets a two byte value into
the object code for each expression in the list.
The value is in 4502 address order (least
significant byte, most significant byte).
Example: . WORD %1000, $2000
produces:
00 10 00 20
.DBYTE expression list
The .DBYTE directive sets a two bute value into
the object code for each expression in the list.
The value is in most significant, least significant
byte order.

Example: .DBYTE %1000, $2000

produces:

—-14-
[_—EEE—— - Sae e e e e e aae——— = —————— e

. TAB

. 0PT

10 00 20 00
expression, expression. expression
The . TAB directive sets displacements for the
printing of the op code, operand, and comment
fields of the source line. Each expression is
a one byte value.
Defaults are 12, 17, 27 .

assembler option list

The .OPT directive allows the user to specify
certain options affecting the assembly.

Possible options are

LIST/NOLIST
NODBJ/0BJ
ERR/NOERR
EJECT/NOEJECT
LIST/NDOLIST determines if a listing is
produced.
NOOBJ/0OBY determines if object coade is
produced.
ERR/NOERR determines if error messages

_ are printed.

EJECT/NDEJECT determines if a form feed, title.
and page ave printed after 52
source lines.

Defaults are:

OBJ — when the object is going to a device/file.
NOOBJ — when the object “device" is memory.
LIST, ERR, EJECT - in all cases.

expression

The #= directive serves the function of ORG.

It sets the current location counter for

subsequent source statements.

NOTE: #= must be written with no intervening
blanks.

expression

The = directive is an equate (EQU) statement.
It must always be written:

LABEL = expression

The value of the "expression" is assigned to
“LABEL".

LIF expression , label

Tha . IF statement allows limited conditional

assembly.

If the "expression" is true (non—zero), the Assembler
skips all following lines up to the one that begins with
the "label™. If the “expression" is false (zero),
assembly continues normally.

NOTE: There can be NO blank between the comma and label.

. INCLUDE #filespec

The . INCLUDE directive allows source code from the device
or file specified in “"filespec" to be inserted into the

assembly.

NOTE: .INCLUDE ‘s can not be nested. That 'is, a file theat
was included cannot contain a . INCLUDE directive.

NOTE: . INCLUDE cannot be the last statement. It must

be followed by a .END or some ather statement.

. END

The .END directive terminates the assembly.

EXPRESSIONS

Expressions are evaluvated strictly left to right. Parentheses

are not valid. Valid operators are:
+ - * / & (% is a binary AND)
These are all binary operands. (*-5 + 3" 1is not valid, but

“O - 5 + 3" is wvalid.)
Example: LDX # ADDR/236
LDY # ADDR&%255
Will put the MSB and LSB portions of the address
of "ADDR" into X and Y vrespectively.

STRINGS:

Strings must be enclosed in double quotes:
.BYTE "“THIS IS A MESSAGE"
The single character representation for the immediate operand

#C

LABEL:

Labels must start in the 1st colunm after (line number)(blank).
A label may consist of up to 255 characters. It must start
with an alpha character and may be followed by elpha—-numeric
characters or the character “. "

NOTE: The character “A" by itself can not be a label.

COMMENTS:

Comment lines start with the character "“; “

No special character is needed to delineate a comment
after the assember code on a line. When the assember
recognizes the end of the operand field (or op code
field for instructions without operands), the rest

of the line is assumed to be comment.

NOTE: This can give unexpected results in some cases.
Example: LbA 7A GET NUM
will generate
AS 07
The decimal number "7" is terminated
by the character "“A". The comment in
this case is:

A GET NUM

If the user wishes to specify the
hex location 7A, he must use $7A.

ERROR DESCRIPTION

When an error nccurs the system will print outk:

ERROR—~ XX [messagel

Where XX represents an ervor number. When the Assembler finds
more than 1 error in a line, up fo 3 error numbers will be listed.
Most ERRORs will produce a message (similar to those below).

ERROR NUMBERS

1

10

MEMORY FULL

All available memory has been used. If issued from Editor,
no more statements can be entered. If issued by the
Assembler, no more labels can be defined.

INVALID DELETE RANGE

The first number specified in a delete range does not
exist.

DEBUG ASSEMBLER ADDRESS ERROR

The origin address on an input line to the Debug Assembler
is incorrectly specified. ’

BLANK REGUIRED AFTER LINE NUMBER

The Assembler expects the first character after a line number
to be a blank. The first character was ignored.

UNDEF INED REFERENCE

Assembler has encountered an undefined label.

ASSEMBLER SYNTAX ERROR

DUPLICATE LABEL

The Assembler has encountered a label that is already defined.
BUFFER OVERFLOW

An internal buffer is full. Try making the source code
shorter.

EGQUATE HAS NO LABEL
An equate (=) must have a label.
VALUE OF EXPRESSION > 255

The value of an expression was greater than 255 but a one
byte value was required.

11

12

i3

14

15

16

17

19

20

21

NULL STRING

A null string is invalid in .BYTE

INVALID ADDRESS OR ADDRESS TYPE

An invalid address type was specified for the mnemonic.
PHASE ERROR

The address generated for a label in pass 2 of ¢the
Assembler is different from the address generated by
pass 1. Other errors can also cause this error to be
generated.

UNDEF INED/FORWARD REFERENCE FOR #= (ORG)

The operand for the #= directive must already be defined
when the directive is encountered. A forward vreference on
an #= directive is invalid.

Example: 1000 #=ABC
2000 ABC = $1000
Will produce this error.

LINE TOO LONG

The input line is too long. (This error results

when there are too many distinct items on a line for the
syntax processor to handle.) Break the input line into
multiple lines.

INVALID INPUT LINE

The Assembler received a line that does not start with a
valid line number.

LINE NUMBER TOO BIG

The line number on an Editor input line is too big.
(greater than &5535).

ND ORIGIN (#=) SPECIFIED

Either no origin (%=} was given or it was specified as O.

This error will cause the assembly to terminate.

OVERFLOW ON NUM OR REN

DOn NUM or REN command the line number generated went over
65535. If REN caused this error, the line numbers are now
invalid. Issuing a valid REN command will correct the problem.

NESTED INCLUDE INVALID

An INCLUDEd file can not contain a . INCLUDE diréctive.

NOTES

LOMEM/HIMEM:

A default low memory address is ¢ ‘_.“uhe system is booted up.
EASMD does NOT auvtomatically reset th1s value.

If a program (for example, a device handler) sets lomem and then
EASMD is entered, this address remains unchanged.

EASMD does set a default UHIMEM (highest usable memory for EASMD
tables, including user text) which can be changed by using the
Change memory command in the Debug monitor.

IOCBs USED:

No command in the Debug monitor does I/0 to a device other than
the screen or keyboard; therefore, IOCBs 1 through 7 are not used
by the system itself while in Debug mode.

Several commands in the Editor however:, can do I/0 to other devices
(ENTER:, ASM, etc). In these cases, the Editor must use one ar

more IOCBs. {The Editor uses I0OCBs 1 through 4). Unpredictable
things can happen to a file that was allocated to one of these
I0CBs and never closed. The user who is debugging code that does
I/0 needs to be aware of this fact.

ALWAYS CLOSE FILES.

Note that returning to CP/A will ALWAYS cause all files to be
ctlosed.

LOAD/SAVE:

To load and save code for debugging, use the CP/A LOAD and SAVE
command. To return to EASMD after LOADing a file, the user must.
enter RUN followed by the coldstart or warmstart address (see
memory map). This will work if the user’s code did not overlay
any memory used by EASMD.

NUMBERS:

The Editor/Assembler/Debug (EASMD) uses positive integers and hex
numbers, but it uses a Floating Point package for ASCII to integer

conversion. This can give some unexpected results.
Example: L DA #6.7

produces

A? 07
Example: 100. 100.1 9.9

entered as line numbers each produces
the line number 100.

BASIC:
The Editor can be used to create and edit 0SS BASIC A+ programs. Of

course, the user must take care of changing line numbers in GOTO.
GOSUB, etc. whenever RENumber is used.

MEMORY MAP

The following are some memory addresses used by EASMD which may
be of interest to the user. Allw. Jvcsses are given in hex.

size of RAM G L 40K 48K

zevro page free for user BO-CF BO-CF BO-CF
user high memory (UHIMEM) 0498 0498 0498
Coldstart 5700 7700 700
Warmstart 5703 77G3 9703

SYNTAX SUMMARY
EDITOR

ASM
ASM [#source filespecl, [#list filespecl, L[#object filespec)

BUG B
BYE
cP

DEL Ino
DEL Inol, 1lno2

DGS

ENTER #filespec

FIND /string/

FIND /string/. A

FIND /string/Inoil, Ina2]
FIND /string/inoil, Ino2l, A
LIST

LIST #filespec

LIST Inoil, Ino21

LIST #filespec, lnoil, 1no21

LOMEM adrv

NEW

NUM

NUM slno, incr
NUM incr
PRINT

PRINT #filespec
PRINT Inoifl, 1no21
PRINT #filespec, 1noll, 1no21]

REN slno, incr
REN incr
REP /old string/new string/
REP /old string/new string/. {A)
G}
REP /old string/new string/lnoll, Ino2]
REP /old string/new string/lnoll, Ino21, {A)
Q)
SIZE

DEBUG

CR

oo

2
P

x < 4 0 X rr o

fadrl< assembler code
Cadr11< data

<data

adril,adr2]

Cadrl

advil,adr2]

tadr £ fcadr, feasr
Cadrl

Cadvl

adri < adr2,; adr3

ASSEMBLER DIRECTIVES

. BYTE

. DBYTE expression list
. END

. IF expression, label
. INCLUDE #filespec

. OPT agption list

. PAGE [string"]

. TAB

.TITLE “string"

. WORD expression list
*= expression

(blank required after <)

expression and/or “string" list

expression, expression. expression

expression

-24~

ERROR SUMMARY

This is a summary of error messages preduced by the EASMD program.
For a more detailed decripition see the section on ERROR
DESCRIPTION.

EASMD ERRORS:

1 - MEMORY FULL

2 = INVALID DELETE RANGE

3 &= DEBUG ASSEMBLER ADDRESS ERROR

4 = BLANK REQUIRED AFTER LINE NUMBER
S . UNDEF INED REFERENCE

& - ASSEMBLER SYNTAX ERROR

7 = DUPLICATE LABEL

8 = BUFFER OVERFLODW

e = EQUATE HAS NO LABEL

10 - VALUE OF EXPRESSION > 2595

11 - NULL STRING

i2 - INVALID ADDRESS OR ADDRESS TYPE
13 - PHASE ERROR

14 - UNDEF INED/FORWARD REFERENCE FOR #= (ORG)
15 - LINE TOO LONG

16 - INVALID INPUT LINE

17 - LINE NUMBER TOO BIG

i? - NO ORIGIN (#=) SPECIFIED

20 - OVERFLOW ON NUM OR REN

21 - NESTED INCLUDE INVAL.ID

For the user convenience a summary of the error messages that
can be generated by DOS and passed to EASMD are included.

DOS ERRORS:

DEC HEX MESSAGE

128 (80} BREAK ABORT

129 (81) FILE ALREADY OPEN

130 (82) NON EXISTENT DEVICE

131 (83) FILE OPENED FOR WRITE ONLY
132 (84) INVALID COMMAND

133 (85) DEVICE DR FILE NOT OPEN

134 (B85} INVALID IOCB NUMBER

135 (87) FILE OPENED FDR READ ONLY
136 (883 END OF FILE

i38 (8A) DEVICE TIMEOUT

139 (8B) DEVICE NAK

144 (20) DEVICE DONE ERROR

146 (22) FUNCTION NOT IMPLEMENTED

160 (AD) DRIVE # ERROR

161 (A1) TOO MANY OPEN FILES (ND SECTOR BUFFER AVAILABLE)
162 (A2) MEDIUM FULL (NO FREE SECTORS)
163 (A3) FATAL SYSTEM DATA I/0 ERROR
164 (A4) FILE # MISMATCH

145 (AS) FILE NAME ERROR

166 (AL) POINT DATA LENGTH ERROR

167 (A7) FILE PROTECTED

168 (AB) COMMAND INVALID (SPECIAL OPERATION CODE)
169 (AT) DIRECTORY FULL

170 (AA) - FILE NOT FOUND

171 (AB) POINT INVALID

NOTICE

0SS reserves the vight to make changes or improvements in the
product described in this manual at any time and without notice.

This manual is copyrighted and contains proprietary information.
All rights are reserved. This document may not, in whole or part,
be copied, photocopied, reproduced. translated, or reduced to any
electronic medium or machine—-readable #form without prior consent,
in writing, from 0SS.

0SS BASIC A+ is Copyright (C) 1981, OPTIMIZED SYSTEMS SOFTWARE.

Optimized Systems Software
10379 Lansdale Avenue
Cupertino, CA 95C14
Telephone: 408-4446—-3099

ATARI and ATARI 800 are registered trademarks of ATARI, INC.

OPTIMIZED SYSTEMS SOFTWARE

0SS BASIC A+

for the ATARI B0OO (R)

COPYRIGHT (C) 1981, 0SS

MARCH 1981

Version 3.0

CONTENTS

NOTE: SectionsANarked-witﬁ’an asterisk (%) are new or
substantially changed from standard Atari Basic.

<t o o — —— | o o o o o T . T S T— T —— . — —— . S S o T T o T

—————————— — . T T — - T T {8 T T T B o . W o S Bt

Terminology i
Special Notations Used in This Manual 3
Abbreviations Used in This Manual 4
Operating Modes 9
Special Function Keys)
*#Arithmetic Operators &
#0perator Precedence 7
Built—-In Functions 7
Graphics 8
Sound and Games 8
Wraparound and Keyboard Rollover 8
Error Messages 8

BYE ?
CONT 9-A
END .9
LET 10-A
LIST 10
NEW 10
REM 10
RUN 11
STOP 11
#Advanced Program Development Commands 12-A
#TRACE/TRACEOFF ‘ 12-A
#*L_ VAR 12-4A
#* OMEM 12-4

#DEL 12-A

3 EDIT FEATURES

Screen Editing : 13
Cantrol (CTRL) Key 13
Shift Key 13

Double WKey Functions 5 14

.Cursor Control Keys 14

Keys Used with CTRL Key ' 14

Keys Used with Shift Key 14
Special Function Keys ‘ 14
Break Key 14
Escape Key 14

4 PROGRAM CONTROL STATEMENTS

FOR. .. TO...STEP / NEXT 15

GOSUB / RETURN 16
GOTO 17
IF. .. THEN 18
ON. . . GOSUB) 20
DN. . . 6070 20
RESTORE 21
#TRAP 22
#Advanced Program Control Statements 22-A
#IF...ELSE. .. ENDIF 22-A
#WHILE / ENDWHILE 22-B

S INPUT/OUTPUT COMMANDS

Input/Output Devices 23
CLOAD 24
CSAVE * 24
DOS and CP 295
ENTER 235
INPUT 25
LOAD 26
LPRINT , 26
NOTE 26
OPEN and CLOSE 246
POINTY 28
PRINT ’ 28
PUT and GET 28
READ and DATA 28
SAVE 29
#STATUS 29
XIO 30
Chaining Programs 30
#Advanced Input / Dutput Commands R 32-A
#INPUT ™. .. " 32—-A
#DIR 32-A
#PROTECT and UNPROTECT 32-B
#ERASE 32-B
#RENAME 32-B
- #PRINT USING 32—-C
*TAB (as a statement) 32-G
*BPUT 32-H
#BGET 32-H
#*RPUT 32-H

#RGET 32-1

—— —— —————————— " ————— — —— v — T ———— . —— _—— —— ——

Arithmetic Functions 33
ABS 33
CLOG 33
EXP a3
INT a3
LOG 34
RND 34
SGN 234
SGR 34
Trigonometric Functions 34
ATN 24
cOos 24
SIN 35
DEG / RAD 35
Special Purpose Functions 35
ADR 35
FRE 35
PEEK 3%
POKE 35
USR 36
#Advanced Functions 36—-A
*DPEEK / DPOKE 36—-A
#ERR 36~-A
*TAB 346-B
7 STRINGS

ASC 37
CHR% 37
LEN 38
STR% 38
VAL 38
String Manipulations 39
#Advanced Strings 40-A
#Substrings 40-A
#FIND 40-B

B ARRAYS AND MATRICES
DIM 41
CLR 43

- S T ——— ——— o S T S T T —— ———— —— ———— ——

. e S e e

GRAFPHICS 45
Graphics Modes 45
Mode O 44
Mode 1 and 2 46
Modes 3, 95, and 7 47
Modes 4 and 6 48
Mode B 47
COLOR 48
DRAWTO 48
LOCATE 48
PLOT 49
POSITION 849
PUT /7 GET (a2s applied to graphxcs) 49
SETCOLODR 50
XI0O (special FILL application) 54
Assigning Colors to Text Modes 54
Graphics Control Characters 56
10 SOUND AND GAME CONTROLLERS
SOUND 37
PADDLE 59
PTRIG 59
STICK 59
STRIG &0
#Advanced Game Control 60-A
#HSTICK 60-A
#VSTICK 60—-A
#PEN H0—-4
11 ADVANCED PROGRAMMING TECHNIGUES AND INFORMATION
Memory Conservation &1
Programming in Machine Language &3
#Numbers (BASIC A+ numeric representation) &8-4A
2 ADVANCED SYSTEM FEATURES
#SET and SYS &2
*MOVE 71

S o — T ——— ——————

*An Overview

#Conventions
figures PMG—1 and PMG-2

#The PMG Statements
#PMGRAPHICS {
#PMCLR
#PMCOLOR
#*PMWIDTH
#PMMOVE
#MISSILE

#The PMG Functions
#PMADR
#BUMP

#PMG Related Statements
#POKE and PEEK
#MOVE

- ---- #BGET and BPUT
#USR
#Example Player/Missile Graphics PROGRAMS

ABOUT THIS MANUAL

This BASIC A+ manval is intended as an "add-on" or appendix
to the "“BASIC REFERENCE MANUAL" supplied by Atari, Inc.
Make sure that your BASIC REFERENCE MANUAL is Atari part
number C-015307, REV. 1 !!

GETTING STARTED

To use BASIC A+ with CP/A:

Place the CP/A master disk in drive 1 and turn on
the power in the same manner used to boot an
Atari disk.

In response to the CP/A prompt “D1:“, simply type
in "BASIC Lreturnl" and BASIC A+ will load and run.

If you exit from BASIC A+ to CP/A (via DOS ar CP
commands or via the RESET key), you may return

to BASIC A+‘s warmstart point by simply entering

RUN to CP/A. NOTE: see CP/A manuval for circumstances
under which this does not work. If necessary.,

you may wse ‘RUN addr’ from CP/A to enter at BASIC A+'‘s
coldstart or warmstart address. See table below for
those addresses.

To use BASIC A+ with Atari‘s DOS:

Becot an Atari master diskette, and enter the Atari
menu DOS.

Put the diskette with BASIC A+ in a disk drive and
use the Atari LOAD BINARY FILE from the menu to load
BASIC A+.

Use the Atari RUN AT ADDRESS menu command to do a
“coldstart" of BASIC A+. The address to use depends
upon the amount of free RAM in your system.

If you exit BASIC A+ (via the DOS or CP commands?,
you may return without losing any program currently
in memory by using the Atari menu RUN AT ADDRESS
command to do a “"warmstart". Again, the warmstart
address depends vpon the amount of free RAM.

size of free RAM 32k 40k 48k
coldstart address 4400 6400 8400
warmstart address 4403 6403 8403

' ERRATA AND MINOR CHANGES

This section contains instructions for making minor changes and
insertions to the Atari Basic manual to transform it into a
BASIC A+ manuval. Some of these changes, however, are necessary
because of errors in the Atari manual even as it pertains to
Atari Basic.

The changes below include two pages to be inserted at appropriate
spots in the manual. The instructions should be self-explanatory.
consisting of a location to change and instructions therefor.

CHANGES

Page 2: paragraph headed "variable:"

Change: "...advisable not to use a keyword...", etc.

To: It is perfectly acceptable to use most keywords
in or as variable names so long as the assignment¢
explictly uvuses the word "LET". Some keywords,
however, are "poison”, including NOT. USING,
and STEP.

PAGE 4: Paragraph headed "Logical Expression"
Note: Logical expressions are a subset of arithmetic
expressions. Thus,
, LET A=(B<C)
is legal, as "B<C" is a logical (and thus
arithmetic) expression.

Page &6: Arithmetic Operators
Delete: First line (The ATARI....)
Add: BASIC A+ uses 7 arithmetic operators:

& Bitwise “"and" of the positive integers (both<{=5£5535)
! Bitwise "or" of two positive intergers

Pages 7 & 10 CONT and LET

Replace descriptions of these statements with those on
next two pages following, which may be inserted in
manual as pages 9-a and 10-a.

footnote: pages marked as this one is, "--information page only--",
are not part of the final combined manual but are
simpy instructions for putting the manual together.

--information page only--

* CHANGES, CONTINUED

Page 10: NEW

Change: “Used in Direct Mode. "

To: Normally used in Direct Mode, but useful in
deffered mode as an alternative to END

T 7 " ‘Page 14: [SHIFT1 [DELETE]

Add: Caution: does not delete BASIC program lines'!

Page 15: FCR

Add: Note: see also SET/SYS() discussion in
chapter 12.

Page 18: IF/THEN
Add: See also IF...ELEE... ENDIF discussion in BASIC
' A+ appendix to this chapter.

Page 19: Thrid paragraph
Change: "The statements R=%:G0OTO 100...."
To: “The statements R=9:GOTO 200...."

Page 22: TRAP
Add: Note: see also CONT (page %) and ERR() L[in BASIC
A+ appendix to chapter 61.

Page 22: Last Line
Change: 32767 to 32768
Add to sentence: or whose value is zero(0).

Page 23: 4th paragraph

Change: “BASIC reserves IOCB #0...*"

To: BASIC A+ uses IOCB #0O for 1/0 to the screen editor,
and the user may take advantage of this fact by
using GET #0,A or PRINT #0;... or using #0 with
virtually any I/0 statements. The user may even
CLOSE #0 but should do so with EXTREME caution.

Page 25: DOS
Add: CP [as a keyword ¢titlel
Add Note CP is identical in function to DOS.

Page 25: INPUT
Add: Note: In BASIC A+, input variables may be subscripted,
with results similar to LET.

Page 25: INPUT

Add at bottom of page: If the user’s sole response to an INPUT
prompt is L[CONTROL-CILreturnl, a special error
(number 27) will be issved by INPUT. This can be
useful in data entry manipulations.

Page 28: PRINT
Add: Note: See also PRINT USING in BASIC A+ appendix to
this chapter.’

-~-information page only--

Page 29:
Delete:
Add:

Page 2%:
Delete:
Add:

Page 30:
Add:

Page 30:
Change:
To:
Page 30:
Change:
To:

Page 31:

Change step 5:

TO:

Add step 5Sa:

Page 3é&:
Add:

Page 3%:
Change:
To:

Page 3%:
Note:

Second paragraph
paragraph

String and matrix variables used in READ statements
must be dimensioned and MAY be subscripted.

NOTE: String DATA may be enclosed in qﬁotes. in
which case commas may be contained in the
string data.

STATUS

Entire description of statement

The STATUS statement places the current static status
of the specified file into the specified variable
(avar}). The “"Device Status Routine® is NOT called,
s0 the value may or may not reflect the true current
dynamic status. Use XID to access dynamic status.

XI10o ,
Note: It is highly recommended that the BASIC user
avoid XIO cmdno’s 3,5,7,%,11,17,.37 and 38.

BASIC A+ users should find all these, as well

as cmdno ‘s 32 thru 36, totally unnecessary.

cmdno 13 of XIO
Example of command 13 (“same as Basic“)
Should be followed by BASIC A+ status

description of aexpl and aexp2
“control bytes"
caoantrol words

Modifying a BASIC program on disk

"READY"

0SS CP/A prompt.

Load BASIC A+ bty typing BASIC Lreturnl.

USR
Note: See also SET/SYS() in chapter 12.

Fourth paragraph

* ..a substring contains up to 99 characters... "
Any string or substring may contain up to 32767
characters (depending upon available memory}.

Figure 7.5)
In BASIC A+, lines S0 and &0 may be replaced by:
50 A3=A%,B%$,C$

--information page only--

Page 39: Under "String Splitting" \
Add To: Beginning of sentence which begins “The startlng
location cannot.

Add: For source strings only (i.e, strings used in an
expression). ..
Note: Destination strings [in A$=...,READ A%(X), INPUT

A$(10,20)] have no subscript restrictions other
than their dimension.

Page 42: Second paragraph ("Note ... ")

Delete: Paragraph and following sample program
Add: Note: BASIC A+ always initializes arrays AND strings
when they are DIMensioned. Array elements are

set to all nulls (binary zeros).

Page 42: Figure 8-4
Note: Lines 30 and 40 may be replaced by
30 READ A(E)

Page 43: PROGRAMMING IN MACHINE LANGUAGE
... Add Note to second paragraph: See also SET/SYS() in CH 12.

Page D-2 (appendix D): FREE RAM

Note: BASIC A+ gives the user more zero page free RAM than
Atari Basic: but uses more RAM in page &00.

Change: FREE RAM addresses to read:

1791 &FF FREE RAM
1664 &80

207 CF FREE BASIC A+ and EASMD RAM
192 co

191 BF FREE EASMD RAM

176 BO

--information page only--

Page I-1 (Appendix I): STOPLN
Delete Line: STOPLN not supported
Reason: Use ERR(1) instead.

Page I-1: ERRSAV
Delete Line: ERRSAV not supported
Reason: Use ERR(Q} instead.

Page I-1: PTABW
Delete Line: PTAEBW not supported
Reason: Use SET 1,xx instead.

Page 117: Index

Note: Index has not yet been updated to reflect
additions of BASIC A+ features. Also,
page number (117) is not correct.

Help: Send in your software registration form
to get on cur FREE newslefter mailing
list. We will NOT send newslefter to
anyone not returning this form.

--information page only--

CHAPTER APPENDICES

\

The following pages are intended to be appendices to the various
chapters of the Atari Basic manual. As such. they have page
numbers that should make it obvious where they are to be inserted
in the manual. Faor examp}e. 12-A and 12-B are to be inserted
after page 12 (chapter 2) in the manval.

Please read these pages thoroughly, as much of the most important
material of the BASIC A+ manual is contained herein.

--information page only--

- CONT
(CON.)

Format: CONT
Example: CONT
100 CONT

In direct mode, this command resumes a program after a STOP
statement or BREAK key abort or any stop caused by an error.

Caution: Execution resumes on the line following the halt.
Statements on the same line as and following a STOP or error
will not be executed.

In deferred mode, CONT may be used for error trap handling.

Example: 10 TRAP 100
20 OPEN #1.,12,0., “D: X"
30

100 IF ERR(0)=170 THEN
OPEN #1,8,0, "D: X": CONT

In line 20 we attempt to open a file for updating. If the
file does not exist, a trap to line 100 occurs. I# the

"FILE NOT FOUND" error occured, the file is opened for output
(and thus created) and execution continues at line 30 via
"CONT".

- LET | . \

Format: CLET1 avar=aexp .
[LET] svar=sexpl,sexp... 1]
Exapmle: LET X=3.5

LET LETTERS$="a"
AS="%", A%, A%, A%$, AS, A%

Normally an optional keyword, LET must be used to assign a
value to a variable name which starts with (or is identical
to) a reserved name.

String concattenation may be accomplished via the for shown
in the last example above . Note that a concatenation of the
form .

A%$=B%.,C$
is exactly equivalent to

A%=B$

AS(LEN(AS)+1)=C%

‘ Examples: DIM A%$(100),B$(1GC0)

A%="123"
B$="ABC"
A$=A%, B$, AS

(At this point., A%$= “123ABC123ABC")
A$(4, F)="X", STR$(3*7), “X"

(At this point, AS="123X21X23ABC")
A$(7)=A%(1, 3)

- (Finally, A$="123X21123")

10 - A

TRACE

ADVANCED PROGRAM DEVELOPMENT COMMANDS

TRACEOFF

LVAR

LOMEM

Formats: TRACE
TRACEOFF

Examples: 100 TRACE
TRACEOFF

These statements are used to enable or disable the line
number trace facility of BASIC A+ When in TRACE mode,

the line number of a line about ¢to be executed is displayed
on the screen surrounded by square brackets.

Exceptions: The first line of a program does not have its
number traced. The objyect line of a GOTD or
GOSUB and the looping line of FOR or WHILE
may not be traced.

Note: A direct statement (e.g.. RUN) is TRACED as
having line number 32768.

Format: LVAR filename
Example: LVAR “E: "

This statement will list (fo any file}) all variables currently
in use. The example will list the variables to the screen.
Strings are denoted by a trailing ‘$‘, arrays by a trailing
l(f. -

Format: LOMEM addr
Example: LOMEM DPEEK(128)+1024

This command is used to reserve space below the user‘s program
space. The user then might use the space for assembly
language routines. The usefulness of this may be limited.
though, since there are other more usable reserved areas
available.

Caution: LOMEM wipes out any user program currently in memory.

12 - A

- DEL

Format: DEL linel,linel
Example: DEL 1000, 1999

DEL deletes program lines currently in memory. If two line
numbers are given (as in the example), all lines between the
two numbers (inclusive) are delefed. A single line number

deletes a single line.

Example:
100 DEL 1000, 1999
110 SET 9, 1: TRAP 1000
120 ENTER “D:OVERLAY1*"
1000 REM THESE LINES ARE DELETED BY
1010 REM LINE 100
1020 REM
1030 REM PRESUMABLY THEY WILL BE
1040 REM OVERLAID BY THE ENTERED PROGRAM
1990 REM SEE ‘ENTER’ AND ‘SET‘ FOR
19299 REM MORE INFO

12 - B

ADVANCED FROGRAM CONTROL

BASIC A+ adds Structured FProgramming capability with
two new Program Control Structures.

IF. . ELSE... ENDIF

Format: IF aexp: <statements>
[ELSE: <statements> 1
ENDIF
Examples: 200 IF A>100:PRINT “TOO BIG"
210 A=100
220 ELSE: PRINT "A-OK"
230 ENDIF

1000 IF A>C : B=A : ELSE : B=C : ENDIF

BASIC A+ makes available an exceptionally powerful cond-—
itional capability via IF...ELSE...ENDIF

In the format given, if the expression evaluates non—-:zero
then all statements between the following colon and the
corresponding ELSE (if it exists) or ENDIF (if no ELSE
exists) are executed; if ELSE exists, the statements
between it and ENDIF are skipped.

If the aexp evaluates to zero, then the statements (if any)
between the colon and ELSE are skipped and those between
ELSE and ENDIF are executed. If no ELSE exists, all state—
ments through the ENDIF are skipped.

The colon following the aexp IS REQUIRED and MUST be followed
by a statement. The word THEN is NOT ALLOWED in this format

There may be any number (including zero) of statements and
lines between the colon and the ELSE and between the ELSE
and the ENDIF. -

The second example above sets B to the larger of the values

of A and C.
Note: IF structures may be nested.
Example:

100 i¥ A>B : REM SO FAR A IS BIGGER
110 IF A>C : PRINT “A BIGGEST"
120 ELSE : PRINT “C BIGGEST"

130 ENDIF

140 ELSE

150 IF B>C : PRINT “B BIGGEST"
160 ELSE : PRINT “C BIGGEST"

170 ENDIF

180 ENDIF

22 - A

" WHILE
ENDWHILE

Format:
Example:

WHILE aexp : <statementsd> : ENDWHILE
100 A=3

110 WHILE A: PRINT A

120 A=A—1 : ENDWHILE

With WHILE, the BASIC A+ user has yet another powerful
control structure available. So long as the aexp of WHILE

remains non—zero, all statements between WHILE and ENDWHILE
are executed.

Example:

Example:

Caution:

Note:

Note:

WHILE 1 :
The loop executes forever

WHILE O : i
The loop will never execute

Do not GOTO out of a WHILE loop or a nesting error
will likely result. (though POP can fix the stack
in emergencies.)

The aexp is only tested at the top of each passage
through the loop.

As with ALL BASIC A+ control strucfures, WHILEs may
be nested as deep as memory space allows.

22 - B

INPUT

DIR

ADVANCED INPUT/OUTPUT

Format: INPUT string—-literal, varl,var..]
Example: INPUT "3 VALUES 22", V(1. V(2), V(3

BASIC A+ allows the user to include a prompt with the INPUT
statement to produce easier to write and read code. The
literal prompt ALWAYS replaces the default ("?") prompt.
The literal string may be nul for no prompt at all.

Note: No file number may be used when the literal prompt
is present.

Note: In the example above, if the user typed in only
a single value followed by RETURN, he would be
reprompted by BASIC A+ with "“??". But see chapter

12 for variations available via SET.

Format: DIR filespec
Example: DIR “D:» COM"
List the contents of a directory to the screen. Action is

similar to CP/A DIR command, but there are no default file
specifications: The example above would list all COMmand
files on drive 1.

32 - A

* PROTECT

UNPROTECT
Format: PROTECT filespec
UNPROTECT filespec
Examples: PROTECT “D:#, COM“

100 UNPROTECT "“D2: JUNK. BAS

PROTECTing a file implies that the file cannot be erased or
written to. UNPROTECT eliminates any existing protection.
Similar to CP/A PROtect and UNProtect, but there are no
default file specifications. In the examples: the first
would protect all command files on drive 1 and the second
would unprotect only the file shown.

ERASE
Format: ERASE filespec
Example: ERASE "D:#. BAK
Erase will erase any unprotected files which match the given
filespec. The example would erase all .BAK (back-up) files
on drive 1. Similar to CP/A ERAse, but fhere are no default
file specifiers.

RENAME
Format: RENAME <filespec, filename>
Example: RENAME "“D2: NEW. DAT, OLD. BAK"

Allows renaming file(s) from BASIC A+. Note that the comma
shown MUST be imbedded in the string literal or variatble
used as the file parameter.

Caution: It is strongly suggested that wild cards (% and ?)
NOT be used when RENAMing.

32 - B

" PRINT USING

Format: PRINT C#fn; JUSING sexp,exp L,exp... 1
Example: (see below? _

PRINT USING allows the user to specify a format for the output
to the device or file associated with "fn" (or to the screen?}.
The format string "sexp" contains one or more format fields.
Each format field tells how an expression from the expression
list is to be printed. Valid format field characters are:

& % +-%, . Lt/

Non—format characters terminate a format field and are printed
as they appear. ¢

Example 1) 100 PRINT USING "“## ##&#X#",12,315,7

2) 100 DIM A$(10) : AS="## HE#XH"
200 PRINT USING AS$,12,3135,7

Both 1) and 2) will print
12 315X7
Where a blank separates the first two numbers and an
X separates the last two.
NUMERIC FORMATS:
The format characters for numeric format fields are:
&R+ -3,
DIGITS (# & *)
Digits are represented by:
& »
— Indicates fill with leading blanks
& - Indicates fill with leading zeroes
— Indicated £ill with leading asterisks
If the number of digits in the expression is less than the
number of digits specified in the format then the digits are

right justified in the field and preceded with the praper
£ill character.

NOTE: In all the following examples b is used to represent a
blank.
Example:
Value Format Field Print Out
32 - C

' ‘ 1 L2 ' bb1

12 i bi2
123 : L33 123
1234 #iH 234
12 L& 012
12 ¥ *#12

DECIMAL POINT(.)}

A decimal point in the format field indicates that a decimal
point be printed at that location in the number. All digit
positions that follow the decimal point are filled with digits.
If the expression contains fewer Fractional digits than are
indicated in the format, then zeroes are printed in the extra
positions. If the expression contains more fractional digits
than indicated in the format, then the expression is vounded
so that the number of fractional digits is equal to the number
of format positions specified.

-~ A second decimal point is treated as a non—-format character.

Example:
Value Format Field Print Out
123. 454 #H4. #4 123. 44
4.7 #&#. #4 bb4. 70
12. 35 $&. #i. 12. 35.
comMMA (.)

A comma in the format field indicates that a comma be printed
at that location in the number. If the format specifies a
comma be printed at a position that is preceeded only by fill
characters (O b #) then the appropriate £ill character will be
printed instead of the comma. ’

The comma is a valid format character only to the left of the
decimal point. When a comma appears to the right of a decimal
point, it becomes a non—-format character. It terminates the
format field and is printed like a non—format character.

Example:
Value Format Field Print Out
5216 i, #HH b5, 216
3 48, HH# bbbbb3
4175 W36, 33 *4, 175
3 &, 2% 000003
2. 71 ik, #, 42. 71,

SIGNS (+ -)

A plus sign in a format field indicates that the sign of the
number is to be printed. A minus sign indicates that a minus
sign is to be printed if the number is negative and a blank

32 - D

Example: .
Value Format Field Print Out

34. 2 $$39%. ## bb%34. 20
34.2 +338%%. #4 +bb$34. 20
1572563. 41 %%, $$9%, $3%. ##+ $1, 572, 563. 41+
NOTE: There can only be one floating character per format
o field.
NOTE: 4+, — or % in other than proper positions will give

strange resuvults.

STRING FORMATS:
The format characters for string format fields are:

% — Indicates the string is to be right justified.
! — indicates the string is to be left justified.

If there are more characters in the string than in the format
field, than the string is truncated.

Example:
Value Format Field Print Out
ABC RAL%L bABC
ABC LR ABCbD
ABC p A AB
ABC L AB

ESCAPE CHARACTER (/)

The escape character (/) does not terminate the format field
but will cause the next character to be printed, thus allowing
the user to insert a character in the middle of the printing
of a number. ’ ’

Example: PRINT USING "###/—#4##",2551472 prints
255-1472
Example: 100 AREA = 408

200 NUM = 23551472
300 PHONE = (AREA#1E+7)+NUM
400 DIM F%$(20)

SO0 F$ = "“(HH4/)IEHE/-HEHE"
600 PRINT USING F%, PHONE
700 END

This program will print
(4081)255-1472

NOTE: Improperly specified format fields can give some very
strange results.

NOTE: The function of "," and “;" in PRINT are overridden in

32 - F

L the expression list of PRINT USING, but when file
number “fn" is given then the following ", "™ or ";" have
the same meaning as in PRINT. So to avoid an initial
tabbing: use a semicolon (i).

Example: PRINT #5; USING A%, B

Will print B in the format specified by A$
to the file or device associated with file

number 5. :
Example: PRINT USING "## /% #=###", 12,5, 5%12.
12 # 5=60
Example: PRINT USING "TOTAL=##. #+", 72. 68

TOTAL=72. 7+

Example: 100 DIM A$(10) : A$="TOTAL="
200 DIM F$(10) : Fe="!1111 144 #+v
300 PRINT USING F%, A%, 72. 68
TOTAL=72. 7+
NOTE: IF there are more expressions in the expression list

than there are format fields, the format fields will
be reused.

Example: PRINT USING "XX##",25,19,7 will print
XX25XX19XXb7

WARNING:

A format string must contain at least one format field. If

the format string contains only non—-format characters, those
characters will be printed repeatedly in the search for a
format field.

TAB

Format: TAB L#fn, 1 aexp

Example: TAB #PRINTER., 20

TAB outputs spaces to the device or file specified by fn (ar
the screen) up to column number "aexp". The first column is
column O.

NOTE: The column count is kept for each device and is reset

to zero each time a carriage return is output to that
device. The count is kept in AUX2 of the I0OCB. (See
0S documemtation).

NOTE: If "aexp" is less than ¢the current column count., a
carriage return is output and then spaces are put out
up to column “aexp".

32 -G

BPUT

Format: BPUT #fn, aexpl, aexp2
Example: (see below)

BPUT outputs a block of data to the device or file spécified by

“fn". The blaock of data starts at address "aexpl" for a length

of "aexp2".

NOTE: The address may be a memory address. For example, %the
whole screen might be saved. Or the address may be the

address of a string obtained using the ADR function.
Example: BPUT #5, ADR(A%$), LEN(AS%)

This statements writes the block of data
contained in the string A% to the file or
device associated with file number S.

BGET

Format: BGET #fn, aexpl, aexp2
Example: (see below)

BGET gets “aexp2" bytes from the device or file specified by
“#n" and stores them at address "aexpl". .

NOTE: The address may be a memory address. For example, a
screen full of data could be displayed in this manner.
Or the address may be the address of a string. In this
case BGET does not change the length of the string.
This is the user’s responsibility.

Example: 10 DIM A$(1025)
20 BGET #5, ADR(A%), 1024
30 A$(1025) = CHR%(0)

This program segment will get 1024 bytes from
the file or device associated with file number
9 and store it in AS. Statement 30 sets the
length of A% to 1025.

NOTE: No error checking is done on the address or length so
care must be taken when using this statement.

RPUT

Format: RPUT #fn, exp [,exp...1
Example: (see below)

RPUT allows the user to output fixed length records to the
device or file associated with "fn". Each "exp" creates an
element in the vrecord.

32 - H

RGET

NOTE: A numeric element consists of one byte which indicates
a numeric type element and & bytes of numeric data in
floating point format.

A string element consists of one byte which indicates

a string type element 2 bytes of string length, 2 bytes
of DIMensioned length, and then X bytes where X is the
DIMensioned length of the string. T

Example: 100 DIM As(&)
200 A% = "XY*"
300 RPUT #3.E. A%, 10

Puts 3 elements to the device or file
asscoiated with file number 3. The first

element is numeric (the value of B). The
second element is a string (A%) and the third
is a numeric (10). The record will be 26

bytes long, (7 bytes for each numeric, 5
bytes for the string header and & bytes
(the DIM length) of string data).

Format: RGET #fn, 4Lsvarl} L[, {svar’}... 1
{avar}) L[, {avar)...]
Example: (see below)

RGET allows the user to retreive fixed length records from the
device or file associated with file number "#n" and assign the
values to string or numeric variables.

NOTE: The type of the element in the file must match the type
of the variable (ie. they must both be strings or both
be numeric). ‘

Example: 1) RPUT #5., A
2) RGET #1.A%

If 1) is a statement in a program used to :
generate a file and 2) is a statement in another
program used to read the same file. an errar

will result. :

NOTE: When the type of element is string, then the DIMensioned
length of the element in the file must be equal to
the DIMensioned length of the string variable.

Example: 1) 100 DIM A%(100)

600 RPUT #3. A%

32 -1I

NOTE:

Example:

2) 100 DIM X$(200) %

800 RGET #2, X%

If 1) is a section of a program used to write a
file and 2) is a section of another program used
to read the same file, then an error will occur
as a result of the difference in DIM values.

RGET sets the correct length for a string variable (the
length of a string variable becomes the actual length
of the string that was RPUT — not necessarily the DIM
length). .

11100 DIM A$(10)
200 A$ = “ABCDE"
800 RPUT #4,AS$

21100 DIM X$(10)
200 X$ = “HI®

800 RGET #6, X$
900 PRINT LEN(X$), X$

I# 1) is a section of a program used to create
a file and 2) is a section of another program
used to read the file then it will print:

S ABCDE

32 - J

DPEEK
DPOKE

ERR

ADVANCED FUNCTIONS

Format: DPEEWK (addr)
, DPOKE addr, aexp
Examples: PRINT “variable name table is at";DPEEK(130)

DPOKE 741, DPEEK(741)-1024

The DPEEK function and DPOKE statement paraliel PEEK and
POKE. The difference is that, instead of working with
single byte memory locations, DPEEK and DPOKE access or
change Double byte locations (or “"words"). Hence, DPEEK
may return a value from O fto 655335 and DPOKE'’s aexp may
be any expression evaluating to a like range.

. The primary advantage of DPEEK over DPOKE is illustrated

by the following two exactly equivalent program fragments:

100 A=PEEK(130)+25&4*PEEK(131)
100 A=DPEEK(130)

In the second example at the head of this section, the top
of memory is lowered by 1k bytes in a single. easy—te—-read
statement.

Format: ERR(aexp)
Example: PRINT “ERROR";ERR(C); “OCCURRED AT LINE“;ERR(1)

This function—in conjunction with TRAP, CONT., and GOTO
allows the BASIC A+ programmer to effectively diagnose and
dispatch virtually any run—time errvor.

ERR(O) returns the last run—time error number
ERR(1) returns the line number where the error occurred

Example:
100 TRAP 200
110 INPUT “A NUMBER:. PLEASE 2>2>", NUM
120 PRINT "A VALID NUMBER" : END
200 IF ERR{(0)=8 THEN GOTO ERR(1)
210 PRINT “UNEXPECTED ERROR #":ERR(O)

36 - A

" TAB

Format: : TAB(aexp)
Example: PRINT #3; "columns: " TAB(20); 20:; TAB(30): 30

The TAB function’s effect is identical with that of the
TAB statement (page 32-A+). The difference is that, for
PRINT statements, an imbedded TAB function simplifies
the programmers task greatly (see the example).

TAB will output ATASCII space characters to the current
PRINT file or device (#3 in our example). Sufficient
spaces will be output so that the next item will print

in the column specified (only if TAB is followed by a
semi—colon, though). If the column specified is less than
the current column, a RETURN will be output first.

Caution: The TAB function will output spaces on some device
whenever it is used; therefore, it should be used
ONLY in PRINT statements. It will NOT function
properly in PRINT USING.

36 - B

ADVANCED STRINGS

SUBSTRINGS:
A destination string is one that is being assigned to.
Any other string is a source string. In

READ X%

INPUT X%

X$=Y%

X$ is the destination string, Y$ is the source string.

Substrings are defined as follows:

STRING definition when ~definition when
destination string source string

S% the entire string from 1st thru LEN
1 thru DIM value character

S$(n) from nth thru from nth thru
DIMth character LENgth character

S$(n,m) from the nth thru from the nth thru
the mth character the mth character

It is an error if either the first or last specified
character (n and m:. above) is outside the DIMensioned size.
It is an error if the last character position given
(explicitly or implicitly) is less than the first character
position.

Example: Assume: DIM A%(10)

A% = “VWXYZ"
1) PRINT A%$(2) prints:
WXYZ
2) PRINT A%$(3, 4) prints:
XY
3) PRINT A%$(5.5) prints:
y4

4) PRINT A%$(7)
is an error because A% has a length of 5.

NOTE: Refer to the LET statement, page 10-a, for examples of
BASIC A+ string concatenation.

40 - A

" FIND

Format: FIND(sexpl,sexp2,aexp)
Example: PRINT FIND ("ABCDXXXXABC", "BC", N)

FIND is an efficient, speedy way of determining whether

‘any given substring is contained in any given master string.

FIND will search sexpl, starting at position aexp, for sexp2.
If sexp2 is found, the function returns the position where it
was found, relative to the beginning of sexpl. If sexp2 is
not found, a O is returned.

In the example above, the following values would be PRINTed:

2 if N=C or N=1
? if N>2 and NC10
0O if ND>=10

More Examples:
10 DIM A%(1)
20 PRINT “INPUT A SINGLE LETTER:
30 PRINT “Change/Erase/List"
40 INPUT “CHOICE ?".A%
SO ON FIND(“CEL"“, A%,0} GOTD 100,200, 300

An easy way to have a vector from a menu choice

100 DIM A$(10): A$="ABCDEFGHIJ"

110 PRINT FIND (A%, "E",3)

120 PRINT FIND (A%(3}, “E")
Line 110 will print “5" while 120 will print "3". Remember,
the position returned is relative to the start of the
specified string.

100 INPUT “20 CHARACTERS, PLEASE:",As

110 ST=0

120 F=FIND(A$, “A",ST): IF F=0 THEN STOP

130 IF A$(F+1,F+1)="B" OR A$(F+1,F+1)="C"
THEN ST=F+1:GOTO 120

140 PRINT “FOUND ‘AB‘ OR ‘AC‘"

This illustrates the importance of the aexp’s use as a
starting position.

40 - B

Note:

HSTICK
VSTICK

ADVANCED GAME CONTROL

See also chapter 13, PLAYER/MISSILE GRAPHICS.

Formats: HSTICK(aexp)
VSTICK(aexp)
EXAMPLES: IF HSTICK(0)>0 and VSTICK(0)<O

THEN PRINT “DOWN, TO THE RIGHT"

If the numbering scheme for STICK(O) positions dismayed

you, take heart: HSTICK and VSTICK provide a simpler

PEN

method of reading the joysticks.

VSTICK(n} reads joystick n and returns:
+1 if the joystick is pushed up
-1 if the joystick is pushed down
O if the joystick is vertically centered

HSTICK(n) reads joystick n and returns:
+1 if the joystick is pushed right
-1 if the joystick is pushed left
0O if the joystick is horizontally centered

Format: PEN(aexp)
Example: PRINT "light pen at X="ipen(0O}

The PEN function simply reads the ATARI light pen registers
and returns their contents to the user.

PEN(O) reads the horizontal position register
PEN(1}) reads the vertical position register

60 - A

NUMBERS

All numbers in Basic are in BCD floating point.

RANGE:
Floating point numbers must be less than 10E+98 and
greater than or equal to —-10E-98.

INTERNAL FORMAT:

Numbers are represented internally in & bytes. There is a S
byte mantissa containing 10 BCD digits and a one byte exponent.

The most significant bit of the exponent byte gives the sign

of the mantissa (O for postive, 1 for negative). The least
significant 7 bits of the exponent byte gives the exponent in
excess &4 notation. Internally, the exponent represents powers
of 100 (not powers of 10}.

Example: 0.02 = 2 % 102 = 2 ¥ 100"-1
exponent= =1 + 40 = 3F
0.02 = 3F 062 00 00 00 00
The implied decimal point is always to the right of the first
byte. An exponent less than hex 40 indicates a number less
than 1. An exponent greater than or equal to hex 40 represents

a number greater than or equal to 1.

Zero is rvepresented by a zero mantissa and a zero exponent.

In general, numbers have a 9 digit precision. For example,
only the first @ digits are significant when INPUTing a
number. Internally the user can usuvally get 10 significent
digits in the special case where there are an even number
of digits to the right of the decimal point (0.2,4...).

ADDITIONAL CHAPTERS

The pages that follow constitute two new chapters to beAadded
to the Atari Basic manual in the process of turning it into
a BASIC A+ manual.

Chapter 12 describes some of the system features that give the
BASIC A+ programmer even more control over the functions and
presumptions of the language. Using some of the features described
in chapter 12 can get you in real trouble...or can give you power
never before possible in wvirtually any Basic.

Chapter 13 is almost a manual in and to itself: it explores the
world of Player/Missile Graphics, formerly accessible only through
poorly documented PEEKs and POKEs and/or slow Basic pragrams.

The speed and scope of Player/Missile Graphics is probably one of
the Atari’s most advanced features...and now YOU, the BASIC A+
user, can have almost total control.

--instruction page only--

12

ADVANCED SYSTEM FEATURES

SET and SYS

Formats: SET aexpl,aexp2
' SYS(aexp)
Examples: SET 1.5

PRINT SYS(2)

SET is a statement which allows the user to exerices
control over a varity of BASIC A+ system level #functions.
SYS is simply an arithmetic function used to check the
SETtings of these functions. The table below summarizes
the various SET table parameters. (Default values are
given in parentheses.)

aexpl aexp2
PARAMETER # LEGAL VALUES meaning
O. (0} o ~BREAK key functions normally
1 =User hitting BREAK cause an
error to occur (TRAPable)
128 —~BREAKSs are ignored
i, (10) 1 thru 12 =Tab "stop" setting fort the
comma in PRINT statements.
2, (&3 0 thru 255 ~Prompt character for INPUT
(default is “2").
3 (0} O =FOR. .. NEXT loops always execute
at least once (ala ATARI BASIC).
1 ~FOR loops may execute zero times
(ANSI standard?}
4, O _ -0On a mutiple variable IMPUT,

if the user enters ¢too few
items, he is reprompted (e.g.
with “22")

(1) 1 =Instead of reprompting., a
TRAPable error occurs.

S, 0 ~Lower case and inverse video
characters remain unchanged
and can cause syntax errors.

(1) 1 =For program entry ONLY, lower
case letters are converted to
upper case and inverse video
characters are uninverted.
Exception: characters between
quotes Temain unchanged.

69

-7

7

8,

)

Note:

Note:

Q)

(0}

(1)

(0)

0 =Print error messages along with
error numbers (for most errors)

1 —Print only error numbers.

(o] —-Missiles (in Player/Missile-

Graphics), which move vertically

to the edge of the screen,

roll off the edge and are lost.
1 : —Missiles wraparound from taop to

bottom and vise versa.

o] =Don‘t push (PHA} the number of
parameters to a USR call on the
stack Cadvantage: some assembly
language subroutines not expect—
ing parameters may be called by
a simple USR(addr} 1.

1 =DO push the count of parameters
(ATARI BASIC standard).

(o} -ENTER statements return to the
READY prompt level on completion
1 =If a TRAP is properly set, ENTER

will execute a GOTO the TRAP line
on end—-of-entered—+file.

The SET parameters are reset to the system defaults
on execution of a NEW statement.

System defaults may be changed either temporarily or
permanently (by SAVEing a patched BASIC A+ via CP/A)
by POKEing the locations noted in the memory map.

Examples:

1)

2)

3)

4)

5)

SET

SET

100
110
120
130

100
110
120
200

100
110
120
130

1.4 : PRINT 1,2.3.4

THe number will be printed every four columns
2. ASC(">")

Changes the INPUT prompt from "?" teo “D¢

SET 9.1 : TRAP 120

ENTER “D:OVERLAY.LIS"

REM execution continues here after entry of
rem the overlay '

SET 0.1 : TRAP 200

PRINT "“HIT BREAK TO CONTINUE"
GOTO 110 '

REM come here via BREAK KEY

SET 3.1

FOR I = 1 TO O

PRINT “ THIS LINE WON‘T BE EXECUTED"
NEXT I

70

MOVE

Format:

Example:

_ Caution:

MOVE from—addr, to—addr, len
CMOVE aexp,aexp,aexpl
MOVE 13#4096, B#40%4, 1024

Be careful with this command.

MOVE is a general purpose byte move uvtility which will move
any number of bytes from any address to any address at
assembly language speed. NO ADDRESS CHECKS ARE MADE!!

The sign of the third aexp (the length) determines the
order in which the bytes are moved.

If the length is postive:

(from) -> (ta)
(from+1) -2 (to+1)

(from+len—1}) -2 (to +len-1)

If the length is negative:

(from+len—1) -> (to+len—1i)
(from+len—-2) -> (to+len-2)
(from+1) => (to +1)

(from) —> (to}

The example above will move the character set map to BASIC
A+’s reserved area in a 4BK RAM system (it moves from $DQOO
to $8000).

13

PLAYER / MISSILE GRAPHICS

This section describes the BASIC A+ commands and
functions used to access the Atari’s Player—Missile Graphics.
Player Missile Graphics (hereafter usually referred to as
simply “PMG") represent a portion of the Atari hardware
totally ignored by Atari Basic and Atari 0S. Even the screen
handler (the "S:"“ device) knows nothing about PMG. BASIC A+
goes a long way foward remedying these omissions by adding
six (&6} PMG commands (statements) and two (2) PMG functions
to the already comprehensive Atari graphics. In addition,
four other statements and two functions have significant uses
in PMG and will be discussed in this section.

The PMG statements and functions:

PMGRAPHICS PMCOLOR PMCLR
PMMOVE PMWIDTH MISSILE
BUMP(...) PMADRC(. ..}

The related function and statements:

MOVE BGET BPUT
POKE USR(. ..} PEEK(. ..}

AN OVERVIEW

For a complete technical discussion of PMG:, and to learn
of even more PMG "tricks" than are included in BASIC A+, read
the Atari document entitled “Atari 400/800 Hardware Manual"
(Atari part number CO1&555, Rev. 1 or later).

It was stated above that the “S:" device driver knows
nothing of PMG, and in a sense this is proper: the hardware
mechanisms that implement PMG are, for virtually all purposes,
completely separate and distinct from the “"playfield" graphics
supported by “S:". For example, the size, position, and color
of players on the video screen are completely independent of
the GRAPHICS mode currently selected and any COLOR or SETCOLOR
commands currently active. In Atari (and now BASIC A+)
parlance, a "player" is simply a contiguous group of memory
cells displayed as a vertical stripe on the screen. Sounds
dull? Consider: each player (there are four) may be "“painted"®
in any of the 128 colors available on the Atari (see Setcolor
for specific colors). MWithin the vertical stripe, each bit
set to 1 paints the player’s color in the corresponding pixel,
while each bit set to O paints no color at all! That is, any
O bit in a player stripe has no effect on the underlying
playfield display.

72

Why a vertical stripe? Refer to Figure PMG-1 for a rough
idea of the player concept. If we define a shape within the
bounds of this stripe (by changing some of the player’s bits
to 1’s), we may then move the stripe anywhere horizontally by
a simple register POKE (or via the PMMDOVE command in BASIC A+).
We may move the player vertically by simply doing a circular
shift on the contiguous memory block representing the player
(again, the PMMOVE command of BASIC A+ simplifies this process).
To simplify:

A player is actually seen as a stripe on the screen 8
pixels wide by 128 (or 254, see below) pixels high. Within
this stripe, the user may POKE or MOVE bytes to establish what
is essentially a tall, skinny picture (though much of the
picture may consist of O bits, in which case the background
"shows through"). Using PMMOVE, the programmer may then move
this player to any horizontal or vertical location on the
screen. To complicate:

For each of the four players there is a corresponding
"missile" available. Missiles are exactly like players
except that (1) they are only 2 bits wide, and all four
missiles share a single block of memory, (2) each 2 bit
sub—stripe has an independent horizontal position, and (3)

a missile always has the same color as its parent player.
Again, by using the BASIC A+ commands (MISSILE and PMMOVE,
for example), the programmer/user need not be too aware of
the mechanisms of PMG.

CONVENTIDNS

1. Players are numbered from O through 3. Each player has
a corresponding missile whose number is 4 greater then
that of its parent player, thus missiles are numbered
4 through 7. In the BUMP function, the "playfields" are
numbered from B through 11, corresponding to actual
playfields O through 3. (Note: playfields are actually
COLORs on the main GRaphics screen, and can be PLOTted.
PRINTed, etc).

2. There is some inconsistency in which way is "UP*®, PLOT,
DRAWTO, POKE, MOVE, etc are aware that 0,0 is the top
left of the screen and that vertical position numbering
increases as you go down the screen. PMMOVE and VSTICK,
however, do only relative screen positioning, and define
“+" ¢o be UP and "-" to be DOWN. LI+ this really bothers
you please let us know!].

3. “pmnum" is an abbreviation for Player—Missile NUMber and

must be a number from O to 3 (for players) or 4 to 7 (for
missiles),

73

. ‘

FIGURE PMG-1

Graphic Representation of Player/Missile Displays vs. Playfield

FIGURE PMG-2

Memory Usage in Player/Missile Graphics

NOTE: assumes 48K system. Ad yust addresses downward
8K or 16K for 40k or 32K systems.

Resolution: single line double line

Top of RAM $C000 $C000
Player 3 $BFFF $BFFF
$BFOO $BF80

Player 2 S$BEFF $BF7F
= $BEQO $BFOO

Player 1 $BDFF $BEFF
$BD0OO $BESO

Player O $BCFF $BE7F
$BCOO $BEOO

Missiles (all} $BBFF $BDFF
$BBOO $BD8O

74

THE PMG STATEMENTS

PMGRAPHICS

(PMG.)

PMCLR

Format: PMGRAPHICS aexp
Example: PMG. 2

This statement is used to enable or disable the Player—
Missile Graphics system. The aexp should evaluate to O,
i, or 2:

PMG. O Turn off PMG
PMG. 1 Enable PMG, single line resolution
PMG. 2 Enable PMG, double line resolution

Single and Double line resolution (hereafter refered to
as “PMG Modes") refer to the height which a byte in the
player "stripe" occupies — either one or two television
scan lines. (A scan line height is the pixel height in
GRaphics mode 8. GRaphics 7 has pixels 2 scan lines high,
similar to PMG. 2}

The secondary implication of single line versus double
line resolution is that single line resolution

requires twice as much memory as double line, 256 bytes
per player versus 128 bytes. Figure PMG-2 shows PMG
memory usage in BASIC A+, but the user really need not be
aware of the mechanics if the PMADR function is used.

Format: PMCLR pmnum
Example: PMCLR 4

This statement "clears"™ a player or missile area to all
zero bytes, thus "erasing" the player/missile. PMCLR

is aware of what PMG mode is active and clears only the
apprapriate amounts of memory. CAUTION: PMCLR 4 through
PMCLR 7 all produce the same action — ALL missiles are
cleared, not just the one specified. To clear a single
missile, try the following:

SET 7.0 : PMMOVE 4. 255

" PMCOLOR
(PMCO.)

PMWIDTH
(PMW.)

Format: PMCOLOR pmnum, aexp, aexp
Example: PMCOLOR 2, 13,8

PMCOLORs are identical ‘in usage to those of the SETCOLOR
statement except that a player/missile set has its color
chosen. Note there is no correspondence in PMG to the
COLOR statement of playfield GRaphics: none is necessary
since each player has its own caolor.

The example above would set player 2 and missile & to a
medium (luminace 8) green (hue 13).

NOTE: PMG has NO default colors set on power-up or
SYSTEM RESET.

Format: PMWIDTH pmnum. aexp
Example: PMWIDTH 1,2

Just as PMGRAPHICs can select single or double pixel heights,
PMWIDTH allows the user to specify the screen width of

players and missiles. But where PMGRAPHICs selects resclution
mode for all players and missiles. PMWIDTH allows each

player AND missile to be separately specified. The aexp used
for the width should have values of 1.2, or 4 —-— representing
the number of color clocks (equivalent to a pixel width in
GRaphics mode 7) which each bit in a player definition will
occupy. ’

NOTE: PMG.2 and PMWIDTH 1 combine to allow each bit of a

: player definition to be equivalent to a GRaphics
mode 7 pixel —— a not altogether accidental occur-—-
ence.

NOTE: Although players may be made wider with PMWIDTH, the
resolution then suffers. Wider “players”" made be
made by placing two or more separate players side-
by—side.

76

PMMOVE

Format: PMMOVE pmnumi, aexpli;aexpl
Example: PMMOVE 0, 120; 1

PMMOVE 1,80

PMMOVE 4; -3

Once a player or missile has been “"defined" (via POKE, MOVE,
GET, or MISSILE), the truly unique features of PMG under
BASIC A+ may be utilized. With PMMOVE:. the vuser may position
the player/missile shape anywhere on the screen almost in-
stantly.

BASIC A+ allows the user to position each player and missile
independently. DBecause of the hardware implementation,
though, there is a difference in how horizonal and vertical
positioning are specified.

. The parameter following the comma in PMMOVE is taken to be

the ABSOLUTE position of the left edge of the "stripe" to be
displayed. This position ranges from O to 255, though the
lowest and highest positions in this range are beyond the
edges of the display screen. Note the specification of

the LEFT edge: changing a player’s width (see PMWIDTH) will
not change the position of its left edge, but will expand
the player to the right.

The parameter following the semicolon in PMMOVE is a RELATIVE
vertical movement specifier. Recall that a “stripe" of
player is 128 or 204 bytes of memory. Vertical movement must
be accaoamplished by actual movement of the bytes within the
stripe — either towards higher memory (down the screen) aor
lower memory (up the screen). BASIC A+ allows the user ¢to
specify a vertical movement of from —-255 (down 255 pxxels) to
+255 (up 255 pixels).

NOTE: The +/~ convention on vertical movement conforms to
the value returned by VSTICK.

Example: PMMOVE Ni VSTICK(N)

Will move player N up or down (or not move him) in
accordance with the joystick position.

NOTE: SET may be used to tell PMMOVE whether an abject
should "“wraparound" (from bottom of screen to top
of screen or vice versa) or should disappear as it
scrolls too far up or down. SET 7,1 specifies wrap-
around. SET 7.0 disables wraparound.

" MISSILE
(MIS.)

Format: MISSILE pmnum, aexp. aexp
Example: MISSILE 4,48,3

The MISSILE statement allows an easy way for a parent player
to “shoot" a missile. The first aexp specifies the absolute
vertical position of the beginning of the missile (G is the
top of screen), and the second aexp specifies the vertical
height of the missile.

Example: MISSILE 4, 64,3

Would place a missile 3 or & scan lines high (depends
on PMG. mode}) at pixel 64 from the top.

NOTE: MISSILE does NOT simply turn on the bits corres—
ponding to the position specified. Ins¢tead, the bits
specified are exclusive—or‘ed with the current missile
memory. This can allow the user to erase existing
missiles while creating others.

Example: MISSILE S5.40.4
MISSILE 5,40,8

The first statement creates a 4 pixel missile at
vertical position 20. The second statement erases the
first missile and creates a 4 pixel missile at
vertical position 24.

78

PMADR

BUMP

PMG FUNCTIONS

Format: PMADR (aexp)
Example: PO=PMADR(Q)

This function may be used in any arithmetic expression and

is used to obtain the memory address of any player or missile.
It is useful when the programmer wishes to MOVE, POKE, BGET, etc.
data to (or from) a player area. See next section en "“PMG
RELATED STATEMENTS" for examples and hints.

NOTE: PMADR(m) —- where m is a missile number (4 through 7)
returns the same address for all missiles.

Format: BUMP (pmnum, aexp?
Examples: IF BUMP (4,1} THEN ..
B=BUMP (0, B}

BUMP is a function which can be used in any arithmetic ex—
pression. BUMP accesses the collision registers of the ATARI
and returns a 1 (collision occured) or O (no collision
occured) as appropriate for the pair of objects specified.
Note that the second parameter (the aexp) may be either a
player number or playfield number (8 through 11).

Valid BUMPs: PLAYER to PLAYER (0-3 ¢o 0-3)
MISSILE to PLAYER (4-7 to 0-3}
PLAYER to PLAYFIELD (0O-3 to B-11)
MISSILE to PLAYFIELD (4-7 to 8-11)

NOTE: BUMP (p,p), where the p‘s are O through 3 and
identical, always returns O.

NOTE: It is advisable to reset the collision registers
if a relatively long time has occurred since they
were last checked. A dummy usage of BUMP Le. g..,
JUNK=BUMP (0O, 03] will clear the registers.

79

: PMG RELATED STATEMENTS
NOTE

See also decriptions of these statements in preceding
sections. The discussions here pertain only to their
usage with PMG.

POKE and PEEK

One of the most common ways to put player data into a player
stripe may well be to use POKE. In congjunction with PMADR,
it is easy to write understandable player loading routines.

Example: 100 FOR LOC=48 TO 52
110 READ N: POKE LOC+PMADR(O},N
120 NEXT LOC

ébb DATA 255, 129,255, 129, 255

PEEK might be used to find out what data is in a part-
icular player location.

MOVE

MOVE is an efficient way to load a large player and/or move
a player vertically by a large amount. With its ability to
MOVE data in upwards or downwards movement, interesting
overlap possibilities occur. Also, it would be easy to have
several player shapes contained in stripes and then MOVEd
into place at will.

Examples: MOVE ADR(A%$),PMADR(2), 128

could move an entire double line resolution player from A%
to player stripe number 2.

POKE PMADR(1}),2355
MOVE PMADR(1).PMADR(1)+1, 127

would fill player 1’s stripe with all "on" bits, creating a
so0lid stripe on the screen.

80

FIGURE PMG-1

‘Graphic Representation of Player/Missile Displays vs. Playfield

1 Relatiy >_.’¢_'
¢ V:‘:‘h'me‘
Poaitien p\-TV SCREEN
([s e o - ———— Playfield Area —
s | | portion of screen you
.:% : Homzoowrm. l| ean PRINT and PL{_)T} ete,
"6' ' (Ffrox.) |
A
IO i o T !
<
A i :
a4 | — A P)ﬂyer 5har>e —_
‘-‘tl | | any “on” (l) bits will ,(.‘.;plqy
-.; | : color selected by PMcoLoR
301 |
A B Wl o v peinnial
] % (ndicates p-'xef (cb’or- ch—;glu_\o(Wi ol +he
L DoubleLinel | Single Live Assumes PMWIDTH 7, |
127 L1255
(Vﬁr‘h‘u[Poo"l\
FIGURE PMG-2
Memory Usage in Player/Missile Graphics
NOTE: assumes 48K system. Adjust addresses downward
BK or 16K for 40k or 32K systems.
Resolution: single line double line
Top of RAM $C000 $C0CO0
Player 3 $BFFF $BFFF
$BFOO $BFB0
Player 2 $BEFF $BF7F
$BECO £BFOO
Player 1 $BDFF $BEFF
$BD0OO $BEBO
Player O $BCFF $BE7F
$BCCO $BEQO
Missiles (all) $BBFF $BDFF

———————— —— " e D LT p—

* BGET and BPUT

As with MOVE, BGET may be used to fill a player memory

b quickly with a player shape. The difference is that BGET
may obtain a player directly from the disk!

- ‘Example: BGET #3,PMADR(O), 128
Would get a PMG.2 mode player from the file opened in
slaot #3.
Example: BGET #4,PMADR(4), 25433

Would fill all the missiles AND players in PMG. 1 mode ——
with a single statement!

'BPUT would probably be most commonly used during program
development to SAVE a player shape (or shapes) to a file
for later retrieval by BGET.

USR

Because of USR‘s ability to pass parameters to an assembly
language rtoutine, complex PMG functions (written in assembly
language) can be easly interfaced to BASIC A+.

Example: A=USR (PMBL INK. PMADR (2}, 128)

Might call an assembly language program (at address PMBLINK)
to BLINK player 2, whose size is 128 bytes.

81

EXAMPLE PMG PROGRAMS

- 1. A very simple program with one player and its missile
100 setcolor 2,0.,0 rem note we leave ourselves in GR.O
110 PMGRAPHICS 2 : rem double line resolution
120 let width=1 : y=48 : rem Jjust initializing

130 PMCLR O : PMCLR 4 : rem clear player O and missile O
135 PMCOLOR 0,13.8 Tem a nice green player
140 p=PMADR(OQ) : rem gets address of player
150 for i=p+y to p+y+4 : rem a 5 element player to be defined
160 read val : rem see below for DATA scheme
170 poke i,val rem actually setting up player shape
180 next i
200 for x=1 to 120 rem player movement loop
210 PMMOVE O, x : rem moves player horizontally
220 sound O, x+%x,0,15 : rem just to make some noise
230 next x
240 MISSILE O.y.1 rem a one-high missile at top of player
250 MISSILE O,y+2,1 rem another, in middle of player
260 MISSILE 0O,y+4,1 rem and again at top of player
300 for x=127 to 255 rem the missile movement loop
310 PMMOVE 4, x rem moves missile O
320 sound 0,255—-x., 10, 15
330 IF (x & 7) =7 : rem every eighth horizontal position
340 MISSILE O, 4,5 rem you have to see this to believe it
350 ENDIF rem could have had an ELSE: of course

S 360 next x
370 PMMOVE 0.0 rem so width doesn’t change on screen
400 width=width#2 D vem we will make the player wider
410 if width > 4 then wxdth =1 rem until it gets too wide
420 PMWIDTH O, width rem the new width
430 PMCLR 4 : rem no more missile
440 goto 200 : rem and do all this again
500 rem THE DATA FOR PLAYER SHAPE
510 data 153 D rem $99 * X%

520 data 189 rem $BD * HXNF *
530 data 255 rem $FF 3 35 36 36 3 3 3¢ 3¢
540 data 189 rem $BD * HERF ¥
550 data 153 rem $99 ¥ ¥ *
CAUTION : do NOT put the REMarks on lines 510 thru 550 1ttt

(DATA must be last statemenf on a line !)

Notice how the data for the player shape is built up...
draw a picture on an B-wide by n—-high piece of
grid paper, filling in whole cells. Call a
filled in cell a ‘1’ bit, empty cells are ‘0’.

Convert the 1‘s and O’s to hex notation and
thence to decimal.

This program will run noticably faster if you use multiple
statements per line.
clarity,

It was written as above for
only.

100
110
120
130
130
150
160
200
210
220
230

240
300
310
320
330
340
350
360
370
380

320
400
410
420
430
440

500
510
520
530
540
550
960
270
280
520
600
610
620
630
640
650
660

A more complicated program., sparsely commented

dim hex$(15),t$(4) : hex$="12345578FABCDEF" .
graphics O : rem not necessary, Just prettier
PMGRAPHICS 2 : PMCLR O : PMCLR 1
setcolor 2,0,0 : PMCOLOR 0O,12.8 : PMCOLOR 1,12,8
poO PMADR(Q) : pl = PMADR(1) : rem addr’s for 2 players
vO &0 : vold = vO :rem starting vertical position
hO 110 : rem starting horizontal position
for loc =v0-B to vO+7 : rem a 16-high double player
read t$: rem a hex string to t$
poke pO+loc, 16#FIND(hex$, t$(1,1),0) + FIND(hex$, t$(2,2),0)
poke pl+loc, 16#FIND(hex$, £t$(3,3),0) + FIND(hex$, t$(4,4),0)
rem we find a hex digit in the hex string; its decimal
value is its position (becuz if digit is zevo it is
not found so FIND returns O !)
next loc
rem ANIMATE IT
let radius=40 : deg : rvem ‘let’ required, RAD is keyword
WHILE 1 : rem forever !1!!
c=int(1é6#¥rnd(C)) : pmcolor 0,C,B : pmcolor 1,C.,8
~ for angle = O to 355 step 5 : rem in degrees, remember
vinew = int(vO + radius # sin(angle))
vchange = vnew — vold : rvem change in vertical position
hnew = hQO + radius #* cos(angle) .
PMMOVE O, hnewi vchange : PMMOVE 1, hnew+8; vchange
Tem move two players together
vold = vnew
sound O, hnew, 10, 12 : sound 1,vnew, 10, 12
next angle
rem jJust did a full circle
ENDWHILE
rem we better NEVER get to here !

LI |

rem the fancy data ! 8421842184218421
DATA 03CO H 3343 3¢

DATA 0OC30 : * 3t *3#
DATA 1008 :
DATA 2004 i
DATA 4002 i
DATA 4E72 |
DATA BAS1 H
DATA BE71 :
DATA B001 H
DATA 2009 H
DATA 4812 '
DATA 47E2 H
DATA 2004 '
DATA 1008 H
DATA 0C30 H
DATA 03CO !

* ¥* R34 3t

it #*3#
e

* & K XK

Notice how much easier it is to use the hex data. With FIND,
the hex to decimal conversion is easy, too

The factor slowing this program the most is the SIN and COS
being calculated in the movement loop. If these values were
pre—calculated and placed in an array this program would move!

83

- EXTENDED ERROR DESCRIPTIONS

The error number explanations in the Atari Basic manual, while
adequate, sometimes fail to give all possible reasons that a
user might get zapped with one. For this reason, and because
BASIC A+ has added several new error messages of its own, we
have included a new set of Error Descriptions.

Note that I/0 related explanations are not included. The best
source of explanations for I/0 errors is probably the Atari Deos
Manual.

NMote that the messages printed by BASIC A+ are shown at the top
of each description (beside the error number).

--information page only--

SiLsg s = —] s SREE S SRR SO IR s

. . & iy e o Tt

.ERRDR NUMBER DECRIPTION

1 = BREAK KEY ABORT

While SET 0.1 was specified, the operator hit the BREAK
key. This trappable error gives the BASIC A+ programmer
total system control. ‘

2 = MEM FULL

All avaiable memory has been used. No moare statements
can be entered and no more variables (arithmetic, string
or array}) can be defined.

3 - VALUE
An expression or variable evaluates to an incorrect valve.

Example: An expression that can be converted to a
two byte integer in the range 0O to 65235
(hex FFFF) is called for and the given
expression is either too large or negative.

A = PEEK(-1)
DIM B(70000Q}

Both these statments will produce a value
error

Example: An expression that can be converted to a one
byte integer in the range O to 255 hex(FF) is
called for and the given expression is too
large.

POKE 5000, 730
This statement produces a value error.
Example: A=SGR(-4) Produces a value error.

4 - TOO MANY VARS

No more variables can be defined. The maximum number of
variables is 128. ‘

S s STRING LEN

A character beyond the DIMensioned or current length of a
string has been accessed.

Example: 1000 DIM A$(3)
2000 A$(5) = "A"

This will produce a string length error at
line 2000 when the program is RUN.

10

11

12

READ, NO DATA

A READ statement is executed but we are already ai{ the
end of the last DATA statement.

LINE #/VAL > 32767

A line number larger than 32767 was entered.

INPUT/READ

The INPUT or READ statement did not recieve the type of
data it expected. :

Example:

Example:

DIM

Example:

Example:

EXPR TOO COMPLEX

INPUT A

If the data entered is 12AB then this error
will result.

Running

1000 READ A
2000 PRINT A
3000 END

4000 DATA 12AB

this program will produce this error.

A string or an array was used before it
was DIMensioned.

A previously DIMensioned string or array
is DIMensioned again.

1000 DIM A(10)
2000 DIM A(10)

This program pfoduces a DIM error.

An expression is too complex for Basic to handle.
The solution is to break the calculation into two or
more Basic statements.

OVERFLOW

The floating point routines have produced a number
that is either too large or too small.

NO SUCH LINE #

The line number required for a GOTO or GOSUB does
not exis¢.
The GOTO may be implied as in:

1000 IF A=B THEN 500

13

14

15

The GOTG/GOSUB may be part of an ON statement.
NEXT, NO FOR

A NEXT was encountered but there is no information
about a FOR with the same variable.

Example: 1000 DIM A(10)
2000 REM FILL THE ARRAY
3000 FOR I = 0 7O 10
4000 A(I) =1
S000 NEXT I
&000 REM PRINT THE ARRAY
7000 FOR K = 0 TO 10
8000 PRINT A(K)}
F000 NEXT I
10000 END

Running this program will cause the following output:
o

ERROR— 13 AT LINE 9000

NOTE: Improper use of POP could cause &his error.
LINE TOO LONG

The line just entered is longer than Basic can handle.
The solution is to break the line into multiple lines
by putting fewer statements en a line, or by evaluating
the expression in multiple statements.

LINE DELETED

The line containing a GOSUB or FOR was deleted after

it was executed but before the RETURN or NEXT was
executed.

This can happen if, while running a program, a STOP is
executed after the GOSUB or FOR, then the line containing
the GOSUB or FOR is deleted, then the user types CONT

and the program tries to execute the RETURN or NEXT.

Example: 1000 GOSUB 2000
1100 PRINT "RETURNED FROM SUB"“
1200 END
2000 PRINT *“GOT 7O suB“
2100 STOP

2200 RETURN
If this program is run the print out is:
GOT TO SUB
STOPPED AT LINE 2100

Now if the user deletes line 1000 and then types CONT
we get

16

17

i8

19

20

ERROR~- 15 AT LINE 2200
RETURN, NO 6GOSUB

A RETURN was encountered but we have no information
about a GOSUB.

Example: 1000 PRINT "THIS IS A TEST"
2000 RETURN

If this program is run the print out is:
THIS IS A TEST

ERROR~ 16 AT LINE 2000

NOTE: improper use of POP could also cause this error.

BAD LINE

If when entering a program line a syntax error occurs,
the line is saved with an indication that it is in
error. If the program is run without this line

being corrected, execution of the line will cause
this error.

NOTE: The saving of a line that contains a syntax
error can be useful when LISTing and ENTERing
programs.

NOT NUMERIC

If when executing the VAL function, the string argument
does not start with a number, this message number is
generated.

Example: A = VAL("ABC") produces this error.
LOAD, TOO BIG

The program that the user is trying to LOAD is larger
than available memory.

This could happen if the user had used LOMEM to change
the address at which Basic tables start, or if he is
LOADing on a machine with less memory than the one on
which the program was SAVEd.

FILE #

If the device/file number given in an I/0 statement is
greater than 7 or less than O, then this error is issued.

Example: GET #8, A

will produce this erraor.

21

22

23

24

25

26

NOT SAVE FILE

This error results if the user tries tao LODAD a file
that was not created by SAVE.

‘USING‘ FORMAT

This error occurs if the length of the entire format .
string in a PRINT USING statement is greater than 255.
It also occurs if the length of the sub—format for one
specific variable is greater than or equal to &O.

‘USING’ TOO BIG

The value of a variable in a PRINT USING statement is
greater than or equal to 1E+350.

*USING’ TYPE

In a PRINT USING statement, the format indicates that a
variable is a numeric when in fact the variable is a
string. Or the format indicates the variable is a string
when it is actually a numeric.

Example: PRINT USING "###", A%
PRINT USING "Z%Z4". A

Will produce this error.
DIM MISMATCH

The string being retreived by RGET from a device (ie. the
one written by RPUT) has a different DIMension length than
the string variable ¢o which it is to be assigned.

TYPE MISMATCH

The record being retreived by RGET (ie. the one written by
RPUT) is a numeric, but the variable to which it is to be
assigned is a string. Or the record is a string, but the
variable is a numeric.

27

28

29

30

31

32

INPUT ABORT

An INPUT statement was executed and the user enteved
cntl-C (return).

NESTING

The end of a control structure such as ENDIF or ENDWHILE
was encountered but the run—-time stack did not have the
corresponding beginning structure on the Top of Stack.
Example:
10 While 1 : Rem loop forever
20 gosub 100
100 ENDWHILE

Endwhile finds the GOSUB on Top of Stack and
issues the error.

PLAYER/MISSILE NUMBER

_Players must be numbered from 0-3 and missiles from 4-7.

PM GRAPHICS NOT ACTIVE

The user attempted to use a PMG statement other than
PMGRAPHICS before executing PMGRAPHICS 1 or PMGRAPHICS 2.

FATAL SYSTEM ERROR

Record circumstances leading to this error and report it
to us immediately.

END OF ‘ENTER’

This is the error resulting from a program segment such as:

SET 9,1 : TRAP line# : ENTER filename
when the ENTER terminates normally.

NEW APPENDICES

The following pages intended to be three new Appendices to
the Atari Basic manual, again with the purpose of properly
upgrading it to a BASIC A+ manual. '

READ APPENDIX J CAREFULLY !

Appendix J lists the known points of incompatibility
between standard Atari Basic and BASIC A+. You will

be surprised to find how minor the differences are

(and how easy it is to get around even these differences).

Appendix K is our attempt to provide you with a usable
index. It lists all keywords AS WELL AS THE STATEMENT
SYNTAX associated with them and gives a page number
reference. We hope you find it useful.

‘Appendix L will be useful to those of you who wish
to customize BASIC A+ in some way.

--information page only--

[e e e T s e ———

- ' APPENDIX J

The following incompatibilities between Atari Basic and
BASIC A+ are known to exist:

1. BASIC A+ and Atari Basic SAVEd program files are NOT

COMPATIBLE !'!! However, the LISTed form of all Atari

Basic programs IS compatible with BASIC A+.

Solution: use Atari cartridge to LOAD all SAVEd programs,
then LIST these programs to a diskette, then
go to BASIC A+ and ENTER them and (optional)
then SAVE them in BASIC A+ form.

2. Various documented RAM locations do not agree. The only
three locations known to be of any significance are
. now deemed to be too volatile to document. Instead,

alternative methods of accessing their purposes are

provided:

STOPLN -— contained line # where a program stopped or
found an error —— NOW accessible via ERR(1).

ERRSAV -— contained the last run—time error number ——
NOW accessible via ERR(O).

PTABW —- the ‘tab’ size used by PRINT when ‘tabbing”’
for a comma —— NOW accessible via SET 1,<ptabw>.

3. By default, BASIC A+ allows the user to enter program text
in lower case, inverse video, or upper case characters.
Atari Basic allowed only upper case (non—inverse video)}
characters. Normally, this is not a problem: however.
REMarks and DATA statements ENTERed which contain inverse
video and/or lower case characters will find that these
characters have been changed to normal video:, upper case.
Reason: BASIC A+ changes all inverse or lower case char-—
acter strings NOT ENCLOSED IN QUOTES.

Solutions:

a. Put quotes into REMarks and DATA statements
as needed.

b. SET 5:0 —- this will disable entering of
lower case and inverse characters; but if
you are ENTERing an Atari Basic program,
there will be none of these anyway.

4. This one is really exotic: When using XIO, ¢the two

parameters normally set to zero (XIO cmd, #file,0,0.FL$)
represent BYTES with Atari Basic. With BASIC A+, they
represent WORDS (double bytes). Reason: in Atari CIO,
each IOCB has six (&) "AUX" bytes. With Atari Basic,

the 2 parameters were placed in AUX3 and AUX4. With
BASIC A+, the parameters are placed in AUX3-AUX4 (first
word parameter) and AUX5-AUX&6 (second word). Obviously,
this allows much more data to be passed to some device
drivers that may actually use the AUX bytes sometime.
NOTE: there are no known current Atari drivers that use

J-1

= ———————— e R —————— —a————~|

these bytes at all, so unless you have custom drivers
the difference is unnoticable.

Similarly exotic: When OPENing a file, there is a (usuvally)
dummy parameter normally set to zero (as in
OPEN #file, mode.O.FL%). As with XIO, this parameter, AS
WELL AS THE MODE parameter, represent BYTE values in Atari
Basic. With BASIC A+, both parameters are WORD valuves.
In Atari Basic, the mode is placed in AUX1 and the second
parameter in AUXZ. In BASIC A+, the mode is placed in
AUX1-AUX2 and the second parameter in AUX3-AUX4. Again,
this was changed to allow more exotic device drivers to
receive more information from Basic.
"NDTE: there are no known simple situations that use AUX2
through AUX4, so the situation may be moot to you. Some
exotic S: (screen) capabilities, though, may be accessible
via AUXZ2. If you ever run into such a situation, follow this
example: _

Atari: OPEN #file,mode,special,FILES$

BASIC A+: OPEN #file,mode+25&%*¥special, O, FILES
Again, this is an unlikely situation to have gccur. The
BASIC A+ method was chosen because of its compatibility with
some Apple II capabilities.

ATARI vs. APPLE II: If you are a software author, there are
obvious advantages in having one BASIC A+ which will run
programs unchanged on %two machines. Excepting for GRaphics
capabilities, Player/Missile Graphics, SOUND, and some game
controls, BASIC A+ is completely compatible on the two
machines. Even graphics are compatible to some degree, but
see the Apple II BASIC A+ manual for more details.

Cartridge convenience: If you did not purchase CP/A (why not?)
BASIC A+ may seem a little awkward to use, what with having to
LOAD it via the DOS menu, etc. Partial solution: after
duplicating the 0SS master disk, RENAME the file BASIC. COM to
AUTORUN. SYS on any Atari DOS version 2S5 or 2.8 master disk.
Then, when you turn on the power, DOS will boot and immediately
run BASIC A+, Of course, you must still use RUN AT ADDRESS

to return to BASIC A+ after going to DOS., but you should need
to do that less frequently now that BASIC A+ gives you so

many extended DOS-like commands. Good luck. And try CP/A

soon —— remember it INCLUDES (at NO extra charge) an Editor/
Assembler/Debug package upward compatible with Atari’s
cartridge (sound familiar 2)

- APPENDIX K

SYNTAX SUMMARY AND KEYWORD INDEX

All keywords, grouped by statements and then functions, are
"lJisted below in alphabetical order. A page number reference
is given to enable the user to quickly find more information
about each keyword.

32—-H
32—-H

24
26
43
48

25
24
28
35
12-B
41
41
32-A
295
36—-A
48
22-A

22-A
22-B
25
32-B
15
28
16
17
45
18
18
22-A

32-A
25

10-A
10-A
10-A

STATEMENTS

syntax

*BGET #fn, addr, len
#BPUT ##n, addr., len
BYE
CLOAD
CLOSE ##fn
CLR
COLOR aexp
CONT
*CP
CSAVE
DATA <ascii data>
DEG
#DEL line [, linel
DIM svar(aexp?
DIM mvar (aexpl,aexpl}
*DIR filename
DOS
#*DPOKE addr. aexp
DRAWTO aexp.aexp
*ELSE {see IF)}
END
#*ENDIF {see IF)}
#ENDWHILE
ENTER filename
#ERASE filename
FOR avar=aexp TO aexp [STEP aexpl
GET #fn, avar
GOSUB line
GOTO 1line
GRAPHICS aexp
IF aexp THEN <stmts>
IF aexp THEN line
*IF aexp : <stmtsd>
ELSE : <stmts>
ENDIF
#INPUT “...“ var [,var...]
INPUT L#fn,] var [,var...1
#[LET] svar=sexp [,sexp..]1
[LET] avar=aexp
[LET] mvar=aexp

10 LIST ([filenamel ;

10 LIST [filename, 1 line [, linel
26 LOAD filename

48 LOCATE aexp.aexp,avar

12-A #LOMEM addr

26 LPRINT C[exp CLiexp...1 C,exp...1 1
12-A #LVAR filename

78 *MISSILE pm, aexp,aexp

71 #MOVE fromaddr., toaddr, lenaexp

10 NEW

15 NEXT avar

26 NOTE #fn, avar,avar

20 ON aexp GOTO line [,1line... 1
20 ON aexp GOSUB line [,line...]
26 OPEN #fn, mode, avar, filename
49 PLOT aexp:.aexp ;
75 #PMCLR pm

76 #PMCOLOR pm. aexp,aexp

75 #PMGRAPHICS aexp

77 #*PMMOVE pml, aexpl L[iaexpl

76 . #*PMWIDTH pm,aexp

28 POINT #fn, avar, avar

35 POKE addr,aexp

20 POP

49 POSITION aexp,aexp

28 ' PRINT [#fnl

28 PRINT exp £ Liexp...1 L,exp...1 3 C:i1
28 PRINT #fn [Ciexp...1 L,exp...1 1 L1
32-C #PRINT C[#fn,] USING sexp . L[expL,exp...1]1 1]
32-B #PROTECT filename

28 PUT #fn, aexp

35 RAD

28 READ wvar f[,var...]1]

10 REM <any remark2>

32-B #RENAME: filenames

21 RESTORE [linel

16 RETURN

32-1 *#*RGET #fn, asvar [,asvar...]
32-H #RPUT #fn,expl,exp...]

i1 RUN Lfilename]

29 SAVE filename

&9 *SET aexp,aexp

S0 SETCOLOR aexp,aexp.,aexp

S7 SOUND aexp,aexp,aexp.aexp

29 STATUS #fn, avar

135 STEP <{see FOR}

11 STOP

32-G *TAB C#fnl, avar

18 THEN <{see IF}

15 T0 {see FOR)}

12-A #TRACE

12-A #TRACEOFF

22 TRAP 1line

32-B #UNPROTECT filename

22-B #WHILE aexp

30 XI10 aexp, #fn, aexp,aexp, filename
28,32-C 7 {same as PRINTY}

page

33
35
37
34
79
37
33
34
3&6—-A
36-A
33
40-B
35
&60-A
33
38
34
o?
&0—-A
79
59
35
34
34
35
34
5%
&0
38
-1
365—-B
36
38
60-A

exp

aexp
sexp
var

avar
svar
mvar

fn

FUNCTIONS

syntax

ABS(aexp)
ADR(svar)
ASC(sexp)
ATN(aexp)
#BUMP (pmnum., aexp)
CHR$ (aexp)
CLOG(aexp)
COS(aexp)
#DPEEK(addr)
#ERR(aexp)
EXP(aexp)
#FIND(sexp, sexp. aexp)
FRE(O)
#HSTICK(aexp?
INT(aexp}
LEN(sexp)
LOG(aexp)
PADDLE (aexp?
#PEN(aexp}
#PMADR(pm)
PTRIG(aexp?}
PEEK (addr?
RND(Q)
SGN(aexp)
SIN(aexp)
SQR(aexp)
STICK(aexp}
STRIG(aexp)
STR$(aexp}
#SYS(aexp)
#TAB(aexp)
USR(addr [,aexp... 3}
VAL (sexp)
#VSTICK(aexp)

EXPLANATION OF TERMS

EXPression
Arithmetic exp
string exp
VARiable
Arithmetic var
String var
Matrix var

(or element)
File Number

line — line number (can

be aexp)
pm - Player/Missile number
(aexp)
Cxxx] xxx is optional
Cxxx...l xxx is optional, and

may be repeated
addvr — ADDRess aexp, must be
0 - 65535

<stmts> one or more statements .

NOTE: keywords denoted by an asterisk (*) not in Atari Basic.

APPENDIX L

BASIC A+ MEMORY USAGE

This section describes memory usage INTERNAL to the BASIC A+
interpreter, in what was ROM in the Atari Basic cartridge.
See the memory map (appendix D) and memory locations (appen-—
dix I) for RAM locations.

Throughout this section, hex addresses are used exclusively.
Whenever three addresses are given together separated by
slashes (e.g.., 4000/6000/8000) they represent the three
values associated with systems which have 32K, 40K, and 48K
bytes of free RAM available.

CHARACTER GRAPHICS RESERVED AREA 4000/ 6000/8000
1Kk bytes of memory are reserved for character
graphics. By reserving this memory at fixed
locations (at least for any given machine size).
the task of writing character set manipulators
is greatly reduced.
P.S.: You can find the address of this area via
the following subterfuge: ,
Charactergraphicsaddress = (PMADR(0)—-9000)%(14#4094)

NOTE: if you do not intend to use character graphics,
you can use this area for assembly language routines,
etc. ;

COLDSTART 4400/46400/8400
Where BASIC A+ comes upon loading from disk. Entering
at this address performs the equivalent of a NEW.

WARMSTART 4403/6403/8403
Equivalent to where Atari Basic goes when the RESET
key is used. Does not destroy any program. but does
close files, etc.

JUMP TO TEST FOR BREAK ; 4406/64046/8406
BASIC A+ checks for the user‘’s use of the BREAK key
at the end of executing each line. Exotic driver’s
might make use of this fact to cause pseudo—interrupts
to BASIC A+ at this point. Write for more details: but
otherwise don’t touch this.

THE SET/SYS() DEFAULT VALUES 4409/6409/840%9
Upon execution of NEW. the set of 10 default byte values
(SET O through SET 9) are moved from this location to
‘RAM ‘. If you would like to change a default, POKE these
default values and then save BASIC A+ via CP/A.
4409 (etc.) is SET O, 440A is SET 1, etc.

CURRENT TOP OF BASIC A+ approx. 7800/9800/B800

But we expect to add features, so if you wish to customize
BASIC A+ in this area we suggest you work from the next -

L-1

DEFINED

address(es) down:

TOP OF BASIC A+ 7B00/9BO0O/BROO

This is where Players from Player/Missile Graphics start in
PMG. 1 mode. Also, the area from 7C00/9C0O0/BCOO up is used
by Atari’s 0OS ROM vpon RESET and power up to initialize'the
graphics screen.

